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Preface

The team at Wilmott is very proud to present this compilation of magazine articles and presen-
tations from our second year. We have selected some of the very best in cutting-edge research,
and the most illuminating of our regular columns. Our columnist, the Collector, contributes his
infamous ‘Know Your Weapon’ series in which he espouses the principle that it is more important
to have a robust model that you understand than a fancy one you don’t. Dr Z gets down to basic
concepts of money management, and Aaron gives us a history lesson.

The technical papers include state-of-the-art pricing tools and models. You’ll notice there’s
a bias towards volatility modelling in the book. Of course, it’s one of my favourite topics, but
volatility is also the big unknown as far as pricing and hedging are concerned. We present research
in this area from some of the best newcomers in this field. You’ll see ideas that make a mockery
of ‘received wisdom’, ideas that are truly paradigm shattering – for we aren’t content with a
mere ‘shift’. Several of these articles are from that hive of original thought that is ITO33. Elie
Ayache has also written his own introduction to this compilation. And, in true French philosopher
tradition, he’s been at the absinthe again!

Finally a big ‘thank you’ to all supporters, the subscribers and the sponsors!

Paul Wilmott
2005





Foreword

Elie Ayache

And so it fell to me to write an introduction for Best of Wilmott 2. To quote from the introduction
of Best of Wilmott 1, by Paul Wilmott: ‘In September 2002 a small, keen group. . . joined forces
with a book publisher to create a new magazine, Wilmott . . .’

‘In September 2002 ’, ‘Create’, ‘New ’: These words speak of birth and novelty; they set a
‘source point’. Somehow Paul’s attempt at introducing Best of Wilmott 1 is easier than mine
today. His introduction is self-giving and originary, whereas mine is a sequel. Mine is unoriginal
and derivative. Also, the title of the first book speaks for itself: ‘This is the first edition of the best
of Wilmott.’ What better way to present a subject than the conjunction of these two superlatives?

‘To write’, ‘Introduction’: Mark these words as I will revisit them later and remark on them.
To give you a hint: This is a book about derivatives and derivatives are essentially all about
writing —they are said to be written on the underlying. How then do you introduce the derivatives
or write about them? By first introducing their underlying? And how do you introduce that?
By floating it? (The French word for ‘floating’ is ‘introduire en bourse’.) What better way of
introducing the derivatives than joining their market at once? Shouldn’t we all stop writing and
start trading? And how can you introduce a market, or introduce somebody to trading?

Why me?
The name of Paul Wilmott imposes itself as best introducer of Best of Wilmott. I have been

considering a variant of the title with the name of Wilmott crossed out. In private correspondence
Paul Wilmott indeed refers to the book simply as Best of 2. Call it selflessness, or self-evidence.
Simply, the man could not get over speaking both in his name and for his name. Imagine him
asking me: ‘Could you please write me an introduction for Best of me, volume 2 ?’

‘Best of 2 ’: The formula almost strikes me like a derivative payoff. And this suits my purpose
just fine. As it severs the link with the original name of the initial introducer, this elliptical formula
seems, as a consequence, to dispense with personality and proper name altogether. Writing is
impersonal. Just as anybody can write a derivative payoff, anybody can write an introduction for
Best of 2. The market is impersonal. Writing derivatives is just a way of handing back to the market,
i.e. to impersonality, the skewed and exotic and idiosyncratic scenarios that the market may have

Contact address: ITO33 SA, 36 rue Lacépède, 75005 Paris, France
E-mail: NumberSix@ito33.com
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inspired you personally. Writing is derivative. It always comes after speech. A compilation book
always comes after the articles compiled in the book, and the introduction of the compilation book
always comes after the compilation book, never before—have you noticed? (Not mentioning that
volume 2 always comes after volume 1.)

Let us pursue the thread of the derivative for a while, that is to say, of impersonality and un-
originality, and let us forget about the best and the privilege of writing about the Best. Essentially,
what I inherit today is the endless task of rewriting. Since a compilation book is a repackaging
and a rewriting of articles initially published in the magazine, writing an introduction for the
compilation book is writing about the rewriting of articles initially written about the derivatives
which are all about writing. How can I even start to do that? Did the writing of derivatives start
one day or has it always been going on? Did the writing of articles about the derivatives start one
day? Did the market start one day? Or has the writing always been going on? From my personal
and localized point of view, something has definitely always preceded my writing. This is volume
2, remember?

Having thus dissolved the superlative and the privilege of introducing it in the impersonal
chain of writing, I may as well move, without further notice or introduction, to what interests
me personally. I am not Paul Wilmott after all, the editor-in-chief and impartial arbitrator of
Wilmott, so the reader will have to excuse a little extremism on my part. And what interests me,
what interests me in general and in the particular instance (which is, as expected, an instance of
writing and rewriting and writing about writing), what has always interested me to the exclusion
of anything else, is replication. (Imitation?)

When you neutralize the primary meaning of the best of (the value judgement) and retain only
the derivative meaning (of a compilation and a rewriting), all you end up with is a replication
argument. Buy this book, so the argument goes, invest in it an initial fee, and you will have
replicated a process of writing, editing and publishing that has lasted for a whole year. From
which it appears that the process of selection of the ‘best’ articles—whose other side is the
rejection of others—is just the necessary consequence of idealization. It has nothing to do with
good or bad, with best or worst, only with relevant and significant. It is a modelling assumption
like any other, with its expected share of choice and sacrifice. Mustn’t you specify a robust
dynamic model before you try to replicate a given payoff?

All of which brings me to volatility. And to writing an introduction for the second issue of
Best of Wilmott, where there is contained, as you will see, a lot of volatility papers. How do
you introduce volatility? Isn’t it, by essence, the subject that has always already started and has
always already been introduced? A lot has been written on volatility (otherwise, I wouldn’t be
today in the position of writing an introduction for a compilation of papers written about volatility).
However, what interests me in volatility today—as you must have guessed by now—is to write
about it derivatively. Not only because I am in the business of writing about the writing of
volatility papers, but because volatility, as an original and underived concept, is now disappearing
everywhere. ‘Writing about volatility derivatively’—for those who didn’t catch my drift—just
means ‘writing about volatility by way of the derivative’. What else? Where is volatility to be
observed in the world, apart from the traded prices of derivative instruments?

I might as well say it straight, at the risk of shocking the reader and shaking him (but this,
according to Paul Wilmott in the introduction of Best of 1, is exactly what I am supposed to
do): There is no meaning to volatility outside the derivative and nobody today knows how to
price the derivative! ‘A lot has been written on volatility’ therefore can only mean ‘A lot of
derivatives have been written’, and it is only through this writing, which is constantly submitted
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to the impersonal rewriting of the market, that volatility can mean anything at all and ever get
introduced. Volatility as the (unobservable) measure of risk, volatility as historical volatility, does
not in the least interest us. And certainly no book—let alone the introduction to a book—can
teach us its meaning. Volatility can only be meaningful within the language of volatility, which
is the language of derivative prices. It can only be meaningful within the fabric of the derivative
market, that is to say, the market as both a texture and a text.

So volatility can only mean something in the derivative sense of volatility-for-a-derivative. And
this, my dear reader, is all about replication. The only way to introduce the subject of volatility
today is to kiss goodbye to the myth of the origin and the myth of the original, introductory talk
about volatility—to kiss goodbye to the models where volatility is posited as an independent and
originary parameter. It is to join at once a market with no origin or starting point, where the only
activity is the activity of derivative writing and model rewriting and the only sense one can make
of a derivative price is the cost of replicating its payoff with other derivative instruments (which
may include the underlying), under a dynamics previously calibrated with the market prices of the
latter. There is no volatility or derivative pricing models per se, only recalibration and replication
episodes.

This of course brings me close to fulfilling the task of writing about writing on a subject
(volatility, the derivatives) which is all about writing, in other words, the task of rehearsing, in
an introduction, nothing more than a replication argument. It also leaves me with a question that
no writing or replication can help answer: ‘How the hell is anybody able to price a CDO?’

FOOTNOTE

1. And I don’t mean implied volatility, as this concept is dying with the Black–Scholes
paradigm and the derivative pricing models now imply several parameters.





1
Time’s Up
Dan Tudball

Dan Tudball winds back the clock and takes a look at the major issues of 2004 and
what they might bode for 2005.

T
imetables were supreme in 2004. The ticking of the clock was omnipresent and fright-
eningly audible and no doubt many in the industry wished they could jump into a
temporal vortex and transport themselves back a couple of decades. Back a few
decades before Enron, Worldcom, Adecco, to a time when a gentleman’s word and
some academic credentials might have been enough. But 2004 was the year of the

timetable, and no such time tunnel was opening up promising a return to the comfort of the
unquestioning past.

Accountancy was to the fore this year. Internal risk management the repository of both hope
for the future of the industry and the focus of questions of ‘who watches the watchmen?’ To be
custodian of both the firm’s profitability and public perception? A question lost in the rush to
comply as Sarbanes Oxley 404 became a reality, and public accountancy firms found themselves
reinvigorated after their time in the wilderness.

The year has brought, under the demands of regulation, new questions and new channels of
communication for the quantitative finance community. Old pastures meanwhile have looked less
than fertile, with equities mostly inactive after the rebound of 2003. Exciting new departures,
such as volatility trading, have faced a shakeup after a false dawn back in late 2003. The credit
derivatives market continues to excite, and grow at a staggering pace. Tightening margins and
technological development have forced the sell side to innovate ever more complex structured
trades. Meanwhile, thanks to the very global nature of the market at this point foreign exchange
has been blooming, despite many a premature obituary. Finally, on the periphery movements have
been made to introduce brand new markets which may represent a massive opportunity in 2005.

Quis custodiet custodes?
As an issue corporate governance and regulatory accounting have been ever present throughout
2004. The heavyweight Sarbanes Oxley Act section 404 (SOX 404), Management’s Reports
on Internal Control Over Financial Reporting and Certification of Disclosure in Exchange Act
Periodic Reports, has been dominant. More specific compliance rules such as the International
Accounting Standards Board’s amendments to standards on financial instruments disclosure and
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presentation (IAS32) and recognition and measurement (IAS39) have also been front and center
in discussion and activity.

The flurry of activity, of course, has all been down to deadlines. SOX 404 had to be imple-
mented in the States in 2004 beginning with entities whose financial year ended last November.
For foreign private issuers and non-US institutions it’s in effect at the end of calendar year 2005.
IAS32 and IAS39 are effective as of January 2005. Both amendments bring non-US-based finan-
cial institutions under a near identical regime to that which the Federal Accounting Standards
Board presides over in the United States, and represent a further move towards convergence in
accounting oversight globally.

Preparation for SOX 404 requires two things. It requires management to provide an attestation
as to the sufficiency of the financial controls and it requires the external audit firm to do two
things, one to review management’s attestation and then to do their own evaluation to report back.
‘The Act requires company’s management to conduct an assessment as to the company’s internal
control over financial reporting.’

It is the aspect dealing with the sufficiency of the financial controls that has naturally prompted
questions within some quarters of the quantitative finance community. Most commonly, concerns
have been voiced over whether or not accountants can really adequately assess the risks and
methodologies employed in complex trading. ‘If you were to ask “Would your average accountant
be able to do this?” Probably not’, says Chris Lucas, at PricewaterhouseCoopers in London. ‘But
part of the preparation for this is the involvement of specialists both in internal audit functions and
in the public accounting arena who aren’t actually qualified accountants. They may be qualified
risk managers, ex traders etc. I’m not suggesting that it’s easy, but those people are available to
complement the core criteria skills which are financial reporting and control activities.’

The question is really a straw man. Firstly the contemporary place that quantitative skills have
in financial institutions dates the original contention. Quantitative finance is pervasive, and this is
something to celebrate. Despite the poor performance and shocks of the past years, quant hiring
has at worst remained steady and in other instances boomed in response to regulatory demands.
Internal risk management exists as a result of quants as much as price discovery, model validation
and program trading. To find someone within the institution to explain the methodology will not
be difficult. To find a third party able to understand that methodology and corroborate its findings
is also not difficult. More quants contracted by public accounting firms, more competition to hire
the best candidates. Who benefits here?

The second aspect really goes to the heart of why standards are a necessity. ‘You can either
treat compliance as an evil and look for minimum compliance or you can use it as an opportunity
to enhance the reputation of the organization,’ Lucas explains. ‘Clearly history has shown what
happens if people are not able to comply, the newspapers are littered with stories of investment
banks which have struggled. The flip side is never getting yourself into that position, but the other
thing is recognizing that recognition and brand are important and are an important part of running
the business. On a macro “what is in it for me?” level, it helps people be reassured about the
type of organization they are dealing with. It helps regulators form that positive view; it certainly
assists when you are trying to get regulatory approval for acquisitions or strategic transactions or
whatever. So I think there are small specific advantages, but there is a broader view in terms of
what the broader stakeholders see of the organization.’
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Oh, so COSO

The Committee of Sponsoring Organizations of the Treadway
Commission

COSO was originally formed in 1985 to sponsor the National Commission on Fraudulent Financial
Reporting, an independent private sector initiative which studied the causal factors that can
lead to fraudulent financial reporting and developed recommendations for public companies and
their independent auditors, for the SEC and other regulators, and for educational institutions.

The National Commission was jointly sponsored by five major professional associations in
the United States, the American Accounting Association, the American Institute of Certified
Public Accountants, the Financial Executives Institute, the Institute of Internal Auditors, and
the National Association of Accountants (now the Institute of Management Accountants).
The Commission was wholly independent of each of the sponsoring organizations, and
contained representatives from industry, public accounting, investment firms, and the New
York Stock Exchange.

The Chairman of the National Commission was James C. Treadway, Jr., Executive Vice
President and General Counsel, Paine Webber Incorporated and a former Commissioner of the
US Securities and Exchange Commission. (Hence, the popular name Treadway Commission.)
Currently, the COSO Chairman is John Flaherty, Chairman, Retired Vice President and General
Auditor for PepsiCo Inc.

Internal control is a process, effected by an entity’s board of directors, management
and other personnel, designed to provide reasonable assurance regarding the achievement of
objectives in the following categories:

• Effectiveness and efficiency of operations
• Reliability of financial reporting
• Compliance with applicable laws and regulations

Key concepts

• Internal control is a process. It is a means to an end, not an end in itself.
• Internal control is effected by people. It’s not merely policy manuals and forms, but

people at every level of an organization.
• Internal control can be expected to provide only reasonable assurance, not absolute

assurance, to an entity’s management and board.
• Internal control is geared to the achievement of objectives in one or more separate but

overlapping categories.

Source: www.COSO.org
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Cynics might say that public accountancy firms were thrown a bone after the catastrophes
of Enron, Worldcom, Adecco, you know the litany. Well, true enough, public accountancy firms
have turned in a very healthy profit in the last year—but that’s a natural part of a cycle that
predicates those firms’ existence. No third party, no audit, not much business done.

An interesting part of the compliance process has been the contrast between the two major
aspects under scrutiny. Investment banks have internal checks in place, are able to explain the
process by which financial instruments work and are able to put a figure to it. If they don’t have
these things then it is very surprising that they are in business at all. The framework has been in
place since the 1980s in the guise of COSO (Oh, so COSO) and has informed the proper running
of investment banks since even before Nick Leeson went wild on Commodity Quay.

No fair!

The IASB raised that old bugbear ‘fair value’, but this time got their way

Accounting standards are hardly the most exciting proposal in the world, but if you brought
in the issue of fair value reporting then many a face on the banking side would be aflush
with fury. This has certainly been the case for at least 15 years. Now the IASB has enshrined
the principle as a preferred option in standards related to financial instrument disclosure and
presentation. But why the fuss?

The banking industry has long preferred to take a modified historical cost basis approach
to measuring banking book performance. One major reason why is that in marking financial
instruments to the current market value of the underlying increases the volatility of earnings.
The counterargument has been that fair value assessments improve the ability to forecast
violations of requirements.

Despite the view that fair value assessment would, for example, force lenders to ignore
higher risk borrowers and cause a flight to quality—thus undermining banks’ roles as long-
term lenders—it is the change in public perception of these issues that has largely informed
the result.

The world knows what happens when derivatives are not marked to market in the books, and
it has happened too often for the argument to be acceptable anymore. If anything this set of
new standards will create further impetus for structural change within traditional investment
banking and greater impetus for the growth of the, still lightly regulated, hedge fund industry
across the board. Watch this space.

‘A lot of the discussion is around the detailed control activity as opposed to financial reporting,
and that falls into the area of hard data,’ Lucas explains. ‘But there is another element of the
COSO framework which looks at the entity level controls, which look at things like tone from
the top, overall control environment etc. I think those are the more difficult to measure pieces to
assess. Some of the preparation has been around that. An example would be the extent to which
there are codes of conduct, but then we drill down to how does it get distributed, how do we
know employees read it, how does it get translated into the language of the employees. That’s
where you’re looking for harder evidence in relatively soft areas.’



TIME’S UP 5

A fact of life
How many more times can people say that credit derivatives have been and are inescapable? This
year should see the end of it, largely because the market is here and highly unlikely to go away.
In April of 2004 the worst kept secret of the year finally was secret no more. In 2003 the main
discussion within credit derivatives circles had been around the need for a single strong index to
take the market onto the next evolutionary step. The situation at that point was a duopoly—or the
less kind would say it was a monopoly with an understudy. Trac-X was the frontrunner, created
by JP Morgan and Morgan Stanley, then handed over to Dow Jones Indexes in early 2004. Iboxx
was London registered and shareholders were ‘just about everyone else’.

After much talk of power broking the inevitable happened with, we are sure, a little ceding of
power here and a little circumspection there. Iboxx and Trac-X merged to form Dow Jones iTraxx.

The new figure on everyone’s lips was $8.2 trillion. This is where the global market in credit
derivatives is expected to be by the end of 2006 according to a report by the British Bankers
Association in the last quarter of 2004; that figure, however, only stands if you include asset
swaps. Without including them the figure is somewhat more conservative; at the end of 2004 the
figure is estimated to stand at around $5 billion and is estimated to exceed $8 billion by the end
of 2006. In terms of growth, however, this is still remarkable, with the market having grown by
50% over the last year alone (see Figure 1).
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Figure 1: Global credit derivatives market (excluding asset swaps in $bns)

In terms of product categories (see Figure 2) credit default swaps still outstrip other classifi-
cations; however, what is notable is a reduction in synthetics—which is largely accounted for by
the increasing significance of subcategories therein—and the emergence of indices. What is likely
to be a massive influence in 2005 is the opening up of emerging markets (see Indicators, below).

At the center of all this is Mark It Partners. Originally an offshoot of TD Securities, Mark It
owns RED, the repository for 99% of the world’s reference data, and absolutely essential to the
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running and growth of the credit derivatives market. The year has been an active one, explains
Lance Uggla, CEO of Mark It, with acquisitions such as the high profile Totem Partners.

‘It’s been a year of consolidating and standardization of the reference data and also making
more transparent the underlying data that supports the market,’ says Uggla. ‘By having standard
reference entities it makes it very easy to transfer data accurately, and to consolidate that data
accurately and make it available to research, trading, sales, origination, hedge funds, asset man-
agers, insurance companies, rating agencies. The data has been made readily available to a lot of
users; we’ve over 250 unique customers now.’

‘Mark It through Totem Valuations does the price testing in the correlation space with banks,’
says Uggla. ‘Within the broker you can see quotes that give evidence of the correlation in the
index space. Now is that same correlation that you are seeing in the index space representative
of correlation in something more bespoke? In the index space it’s a known set of names and
correlation can be executed in a quite liquid fashion in a broker around the index names, then
within banks. Banks do all these customized CDOs or bespoke CDOs and is that same correlation
existing in bespoke products as is existing in the index tranches? Those are the quantitative
discussions, which are occurring right now—we are active in those discussions. I think as more
and more information becomes available then developing and fine-tuning models in the bespoke
areas become a little easier.’

Keep on keeping on

‘Retirement at 65 is ridiculous. When I was 65 I still had pimples.’ The foreign exchange markets
are very much the George Burns of the financial world, the number of times a sell-by date has
been applied and then hastily removed would, to mix metaphors completely beyond reason, put a
bikini wax specialist to shame. But such is the case. Since 2001, however, the volume of foreign
exchange transactions has grown by 57%.
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Within this sample OTC derivatives, consisting of ‘non-traditional’ foreign exchange deriva-
tives (cross currency swaps etc.) and all interest rate derivatives, have seen average daily turnover
increase by 112% over the same period.

The Bank of International Settlements reports, in its Triennial Central Bank Survey of Foreign
Exchange and Derivatives Market Activity:

The growth in turnover was driven by all types of counterparties. Trading between
banks and financial customers rose markedly, and its share in total turnover went up
from 28 per cent to 33 per cent. Based on market commentary, the higher activity
between reporting banks and financial customers may to a large extent have reflected
a sizeable increase in activity by hedge funds and commodity trading advisers, as
well as robust growth of trading by asset managers. This is in contrast with the
period between 1998 and 2001, when activity in this market segment had been driven
mainly by asset managers, while the role of hedge funds had reportedly declined.
Trading between reporting dealers also rose between 2001 and 2004, although its
share continued to fall, from 59 per cent in 2001 to 53 per cent in 2004. Restraining
factors might include the continuing consolidation in the banking industry, as well
as efficiency gains derived from the use of electronic brokers in the interbank spot
market. For its part, the share of trading between banks and non-financial customers
edged up slightly to 14 per cent.

Trading was again largely driven by the combination of a weak US dollar but also augmented
by the inaction on the stock markets over the year. Dollar–euro pairings accounted for 28% of
daily turnover, dollar–yen was 17% and dollar–sterling took 14%. Bets on the dollar’s continued
decline against the euro were heavy throughout the year. With no sign of the US winding back

TABLE 1: GLOBAL FOREIGN EXCHANGE MARKET TURNOVERa

(daily averages in April, in billions of US dollars)

Instrument 1989 1992 1995 1998 2001 2004

Spot transactions 317 394 494 568 387 621
Outright forwards 27 58 97 128 131 208
Foreign exchange

swaps
190 324 546 734 656 944

Estimated gaps in
reporting

56 44 53 60 261 07

Total ‘traditional’
turnover

590 820 1,190 1,490 1,200 1,880

Memorandum item:
Turnover at April

2004
exchange ratesb 650 840 1,120 1,590 1,380 1,880

aAdjusted for local and cross-border double-counting.
bNon-US dollar legs of foreign currency transactions were converted into original currency amounts at average exchange rates for
April of each survey year and then reconverted into US dollar amounts at average April 2004 exchange rates.



8 THE BEST OF WILMOTT 2

its unstated weak dollar policy, the need for businesses with large revenue streams from the US
to hedge against swings will remain a constant.

Volatile behavior
The year before last was seat-of-the-pants stuff for most people in the equities markets. After
the nightmare of 2002, 2003 looked to be beginning in the same fashion. Down. But then, after
the first quarter, the choppy, yet inexorable, rise began—the markets were transfixed. Volatility
was king.

But then 2004 happened. One long yawn—barely a shift over the long term and volatility was
now as hard to come by as vodka at an AA meeting. Despite this, though, industry estimates put
the total assets under management by long volatility funds at between $1.5 and 2 billion–an up
to 33% rise on the same time last year. So what’s happening?

Rami Habib runs the FIMAT volatility funds index under the auspices of SocGen in London,
and has his finger on the pulse of a thoroughly exciting (whether for good or bad) market.

‘The main reason why we chose to look at the vol-arb space was because at the time—a year
and a half ago—I found that if I was talking to investors, there was very little understanding of
what vol-arb managers were doing,’ explains Habib. ‘They could understand long-short equity
bias, and although they would say that they were well diversified across many different hedge
funds they would still have a long equity bias—so where they thought they had a well-diversified
portfolio it wasn’t really all that well diversified.’

Habib started to hear investors suggesting they wanted to look at the vol-arb space. ‘Most
people saw vol-arb funds as being long volatility funds so they would have a long options profile,
they wouldn’t do a great deal for 90% of the year, they would be the hedge of the portfolio. They
would have one vol-arb manager and they wouldn’t care what he did most of the time unless
there was a situation.’

Naturally, in the early days most of the managers Habib and his team were talking to were
long volatility purely in equity markets. ‘As time has gone by, with the squeeze in volatility,
managers have suffered. Some of the long-running long-vol managers who have been going since
the mid nineties are still around and will probably still be around in years to come even though
they have had a drawdown of 30 to 40%.’ But these managers have proved they can make money
in the past and they will keep on going. ‘We saw quite a few long volatility managers launching
just prior to October 2003,’ Habib says. ‘Starting a fund with a 30% drawdown is not going to
help anybody, so we’ve seen quite a few closures. None of these funds were ever really able to hit
their stride. Quite a few managers are looking at volatility as a relative value strategy. They don’t
necessarily have to have a long bias. Also there are many who are looking further than equity and
are looking at the fixed income side and the commodities side and currencies. So the opportunities
are there for managers who are becoming more like a global macro with a volatility focus.’

‘We’re probably having the most interest in volatility funds opening up that we’ve had for
a long time,’ Habib reports. ‘The thing that has saved this market is that the whole hedge fund
market has been difficult throughout the year. It’s not that long-vol funds have done particularly
well but that is in line with other strategies being hurt as well.’

As for next year, Habib says, with volatility so low so long, people are itching to take a bet on
it starting up soon. ‘Now we are seeing standalone funds which are alpha generated, new territory
for some of the funds. We’ve not seen significant asset outflows. We’re seeing a change in the
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field with money going from the long-vol funds into relative value operations. It’s a strategy
where the universe is still small, there is difficulty in finding two guys doing the same thing, and
there are still few managers who are sufficiently knowledgeable to make this kind of strategy
work.’

Indicators

Options markets up, up, up

With equities somnambulant it was no surprise that 2004 was a banner year for the options
exchanges. The Chicago Board Options Exchange (CBOE) reported that October volume totaled
33 357 205 contracts traded, an increase of 17% over the October 2003 volume of 28 635 741
contracts. Through the end of October, CBOE’s year-to-date volume of over 295 million
contracts traded is up 27% over 2003 on track to establish a new all-time annual volume
record, surpassing the previous high of 326 million contracts in 2000.

The Chicago Board of Trade (CBOT) announced that total exchange volume continued its
strong growth, reaching 47 830 745 contracts in October, up 12.8% from last year. Year-to-date
(YTD) volume through October was up 29.5% to 494 383 000 from January through October last
year. Average daily volume in October increased 23.6% to 2 277 655 contracts from October
2003 levels.

CBOT President and CEO Bernard Dan said, ‘In October the CBOT reached a new all-time
annual trading volume record, surpassing the prior record set by the exchange in 2003.

’The impressive gains in our volume underscore the confidence our customers have in
the CBOT’s risk management products, in its superior electronic trading platform, innovative
clearing system, and in its markets, known for their liquidity, transparency and integrity.’

Approximately 88.4 million contracts were traded on the international derivatives market
Eurex in October. This equates to an average daily volume of approximately 4.2 million
contracts. At roughly 893 million contracts, total turnover for the current year exceeds
previous-year levels by around 20 million contracts or 2%. Furthermore, the world’s largest
derivatives market recorded its highest open interest to date with open interest of 76 million
contracts. The number of open positions has climbed 22% since October 2003.

Outsourcing

It’s not been talked about too openly but following on from the well-known customer
service outsourcing, vendors in India are providing more and more analytics and research
to departments in Europe and the US. It’s a natural result of greater regulatory demands to
quantify research and the corresponding squeeze this puts on the bottom line. Also, with the
squeeze on fees occurring for hedge funds, outsourcing model testing and the like to firms in
the subcontinent.

Some are going further, with funds setting up dedicated teams in India whilst running their
operations in the main financial market centers. Shariar Shahida of New York’s Constellation
fund told the Financial Times that ‘We haven’t moved the advanced quant work to India yet . . .

but there’s no reason we couldn’t do that in the future.’
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One interesting aspect to look out for over the next year will be the natural result of this
labor arbitrage. With reports estimating annual growth of 45% for outsourced jobs in India
and a total of 1 million Indians employed by an outsource vendor, it is only a matter of time
before secondary markets begin to move in to take advantage of the price increase which will
inevitably occur.

Real estate

A quiet revolution occurred in the UK in March 2004. After many years of lobbying the UK
government brought taxation on property derivatives in line with that of other derivatives.
This has been the major stumbling block in making index-based property derivatives a viable
offering thus far.

Property is the last asset class remaining without a liquid derivatives market either in the
UK or the US. In the UK, it has been argued that the ideal index exists for a nascent liquid
derivatives market. The Investment Property Databank (IPD) Index was established in 1986,
it is now based on over 12 000 commercial properties with a current value in excess of £100
billion. This represents some 75% of the total institutional investment property market.

The IPD also publishes a UK Monthly Index, which is increasing in importance. Both the
Annual and Monthly Indices provide data on Capital Growth, Income Return as well as Total
Return. Most major property market participants both contribute to and use these indices. This
is all according to a report by Deutsche Bank.



2
First Cause
Dan Tudball

Louis Bachelier’s Théorie de la spéculation defied categorization, but its ideas gave
birth to the field of mathematical finance. Dan Tudball looks at the life and work of
the man who started it all . . .

Q
uantitative finance enjoys a rare distinction amongst the sciences in being able
to identify the single event that brought it into existence. When Louis Bachelier
successfully defended his thesis Théorie de la spéculation on March 29th 1900
he effectively inaugurated year zero on the quantitative finance calendar. March
29th really ought to be marked by champagne toasts and new resolutions across
investment banks, hedge funds and campuses the world over.

The subject of Louis Bachelier has developed a mini area of study in itself, with a few par-
ticularly committed researchers dedicated to discovering more about the man dubbed the father
of mathematical finance. Bachelier’s work contains so much that is familiar today, but predates
the work of so many whose contributions were acknowledged during their lifetimes. His work
influenced Wiener, Kolmogorov, Ito, Black, Scholes and Merton to name but a few. Periodi-
cally ‘rediscovered’ over the last hundred years Bachelier’s contribution has a talismanic quality
about it.

The road to defending the thesis was not an easy one. Bachelier’s life is strewn with misfortune
and tragic misunderstanding, obstacles which, had they not been present, might have allowed the
acceptance of finance as a legitimate area of study and the subsequent evolution of the financial
markets to have occurred earlier.

The context
Shortly after his graduation from secondary school in Caen, northern France, first his father then
mother died in quick succession. Bachelier was forced to assume control of his father’s wine
business. It was early 1889, Bachelier was not yet 19 years of age. Having achieved the degree
of baccalauréat es sciences, his education was unavoidably interrupted—unfortunate for a young
mathematical mind beginning to get to grips with the great theoretical debates of the day. Those
interested in math applied themselves either to mathematical physics or geometry. Probability
simply did not exist as an area of study or research.

While his contemporaries such as Emile Borel continued on their path through academia,
Bachelier was instead tending to the needs of the family business and assuming responsibility
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for his sister. The Bachelier family was very much part of the community in Le Havre, where
his father both worked as a wine merchant and was the Vice Consul of Venezuela. His mother
was the daughter of a local banker who also dabbled in poetry. The loss of his mother and
father dragged Bachelier away from his formal education, and thrust him into the practical con-
siderations of the market. At the helm of Bachelier Fils he had his first interactions with the
Paris Bourse, in particular the heavily traded Rentes contracts. This practical education was
to prove beneficial in terms of his ability to be original but the lack of the formal training
that should have occurred at this point was to prove a burden he would carry till the end of
his life.

After his baccalauréat Bachelier should have gone on to a Lycée for two years. The ground-
ing in science required for his later choice of career could only be acquired here. Bachelier’s
passion for science was innate, and something that he did not neglect even given his practical
responsibilities. But being self-taught meant that there were inevitably gaps in his knowledge.
Once at the Sorbonne he struggled; although he eventually did succeed at each level it was only
by a very narrow margin. To have passed at all, however, is not to be undervalued—the stan-
dards were painfully high—but had he had the benefit of the Lycée education doubtless he would
have performed far better at an earlier stage. This unorthodox aspect of his curriculum vitae was
perceived as a handicap, and it was largely due to this that he was never offered a university
chair.

After three years as a businessman, somewhat against his will, the problems were further
compounded when Bachelier was drafted into the French army, to serve for one year. By the
time he was demobbed he was 22. Entirely self-taught he then entered the Sorbonne to sit for his
Bachelor of Science which he attained in 1895 after much struggle. This was followed in 1897
by a certificate in mathematical physics.

Since the death of Pierre Laplace in 1827 probability theory had been in the doldrums, it
was not deemed worthy of any serious effort by mathematicians. As a recognized discipline it
dates from after 1925. Laplace had introduced various ideas and techniques in his book Théorie
analytique des probabilités. Prior to Laplace probability theory had predominantly been stimulated
by and directed toward the mathematical analysis of gambling.

Although the theory of errors, actuarial mathematics and statistical mechanics arose during the
nineteenth century, the difficulty in arriving at a definition of probability that was precise enough
for use in mathematics yet comprehensive enough for application to a range of phenomena meant
that it was largely left to people looking for a quick franc. Due to this, mathematicians largely
abandoned the study of probability for nearly a century.

Bachelier’s thesis could not have applied itself to questions that were more out of vogue,
distinguishing two types of probabilities with reference to operations on the exchange. The thesis
could not be considered a probability thesis and instead was slotted into the mathematical physics
pigeonhole. But it wasn’t about physics; it was about the stock exchange—rather a trivial pursuit
in the minds of the intellectual elite. The paper is remarkable in that although the reasoning
did not display the sort of rigor one expects, the intuitive aspect is largely correct. There was no
mathematical foundation for probability in the late nineteenth century, yet here we find the origins
of mathematical finance, stochastic calculus, the theory of Brownian motion, Markov processes,
diffusion processes and so on. But what the thesis board at the Sorbonne saw was a paper lacking
in technical rigor. A paper dealing with finance! Talking about probabilities! There was only
one person who was willing to give papers that refused simple categorization any time: Henri
Poincaré, the greatest mathematician at the turn of the century.
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The thesis
Let us now consider the remarkable list of precedents Bachelier set with this single paper.

• Initiated the theory of Brownian motion. Predating Einstein’s Nobel winning paper by
five years.

• The paper represented the first attempt to mathematically model price movements and
evaluate contingent claims in financial markets.

• His formulation that the speculator’s expectation is zero was seminal, implicitly creating
the axiom that the market evaluates assets using a martingale measure.

• Bachelier proposed the further hypothesis that price evolves as a continuous Markov
process, homogeneous in time and space. Markov did not begin work on this until 1906.

• He showed that the density of the one-dimensional distributions of this process satisfies
relations now known as the Chapman–Kolmogorov equation. He noted that the Gaussian
density with linearly increasing variance solved this equation. He also arrived at this result
by considering the price process as a limit of random walks.

• Bachelier observed the family of distribution functions of the process satisfies the heat
equation. Probability diffuses. This model is applied to calculate various option prices.

• With path dependent options in mind Bachelier calculated the probability that Brownian
motion does not exceed a fixed level. He found the distribution of the supremum of
Brownian motion.

Poincaré was impressed. Despite the unorthodox subject matter and almost cavalier approach
to rigorous proof he wrote a highly positive report. ‘The hypothesis . . . that the probability of a
deviation from the current market price is independent of the absolute value of this price. The
hypothesis holds provided that the deviations are not too large. The author states this clearly,
without perhaps emphasizing it as much as he ought to. It is enough that he has stated it explicitly
so that his reasoning is correct.’

Bachelier was fortunate that Poincaré made such a careful study, and already drawn to the
paper by the application of the heat equation and development of ideas of trajectories. In the future
Bachelier would suffer for his assumptions. Poincaré and the committee awarded the distinction
‘Honorable’ which apparently was the highest distinction that could be conferred on a paper that
was not purely mathematical and lacked some of the rigor required for the higher awards.

Despite receiving a positive assessment of his primary thesis from the pre-eminent mathe-
matical mind of the age, Bachelier fell into relative obscurity soon after achieving the doctorate.
Although Théorie de la spéculation was published in the most respected journal of the time,
other factors militated towards Bachelier receding into the shadows. His second thesis, on the
movements of a sphere in fluid, was nowhere near as innovative as his first. Furthermore, his
resumé did not fit with the demands of the upper echelons of academia. Bachelier must have been
employed in something with regard to the Bourse in order to survive; there are records of his
having received scholarships to continue his studies. Poincaré continued to provide a benevolent
force in helping to keep Bachelier’s head above water, but the way into the establishment was
proving remarkably unyielding.

As mentioned Bachelier’s academic efforts were primarily funded by scholarships. Many of
these were granted by Emile Borel—the founder of the modern theory of functions—less than a
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year younger than Bachelier, but already well ensconced in the establishment. He was the youngest
person to have ever received a chair at the Sorbonne at 25, he had a prominent position on the
Council of the Faculty of Sciences. Borel would report favorably upon Bachelier’s applications
for funding, but despite a deep interest in probability he took no interest in Bachelier. Amongst
the reasons for this were Bachelier’s subject matter, Bachelier didn’t fit the necessary criteria
to be ‘one of us’. Borel enjoyed a rarefied view of proceedings, he did not see the point of
hyperasymptotic diffusion, Bachelier’s obsession after 1900. So on the one hand he could afford
to be magnanimous and keep Bachelier’s efforts alive, but on the other he could completely ignore
the results of those efforts and block Bachelier’s progress simply through ignorance. And that
was very much the way of things for Bachelier until 1909.

The rentes

How the French Revolution created a massively liquid market in bonds

Louis Bachelier predominantly concerned himself with the Rentes, perpetual government bonds
traded on the Paris Bourse in the nineteenth and early twentieth centuries. These instruments
came about after landowners, who had fled France during the Revolution, returned to discover
that their holdings had been sold as national property. As recompense the French state took a
loan of a billion francs in 1815.

Interest was paid on this by the state (but the capital was never paid), thus creating a
perpetual bond—the success of this initial issue led to further new offerings along the same
lines. At the time Bachelier wrote his thesis the nominal capital of this debt was around 26
billion francs against an annual national budget of 4 billion francs.

Rentes provided the dispossessed noblemen with a quarterly income, and the certificates
were passed on through families and actively traded. The market was very active, with price
fluctuations happening in continuous time. Prices did not generally deviate much from par
value, absolute price changes were roughly the same as relative price changes, an average
standard deviation over the year of 2.5% was normal. Rentes ceased to exist in 1914, when
the franc collapsed with the outbreak of war.

In that year Bachelier lectured at the Sorbonne as what was then known as a ‘free professor’,
he only began to receive payment for his work in 1913. He presented on probability calculus
with applications in the financial markets. In 1912 he published his lecture notes as the book
Calcul des probabilités, the first work to surpass Laplace. This was followed in 1914 by Le jeu,
la chance et le hasard which reiterated his argument that continuous distributions best describe
random phenomena. His systematic use of the concept of continuity in probabilistic modeling and
not simplification through the use of discrete distributions was, he felt, his major contribution to
science. The book was an enormous success, selling over 6000 copies. That year was the first to
look truly positive for Bachelier’s career since his thesis.

In that year the Council of the Paris University actually supported a move to make Bachelier’s
appointment permanent and paid. But the Great War erupted and destroyed this plan. Once again
Bachelier was drafted, as a private, and served in the army until the end of 1918. World War I was
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a destroyer of illusions, it left elites on shaky ground. Bachelier survived the war, inevitably other
mathematicians, with tenure, did not. An unfortunate irony of the war was that it left Bachelier
with more opportunity. He was able to lecture, first at Besançon, then Dijon and Rennes.

The misunderstanding
It was 1926 when Bachelier passed through perhaps the most trying period of his life. A position
had become available at Dijon, where he had taught between 1922 and 1925. But the application
was turned down and he was blackballed by the university due to an unfavorable report from
Paul Lévy.

In his thesis Bachelier progressed from a ‘drunkard’s’ random walk with n discrete steps each
of size d in time t, to a continuous distribution of where the drunkard might be at time t. He
realized that there had to be a relationship between n and d, with d proportional to (t/n)1/2 in
order for the limit process to work as n increased.

In a paper of 1913 (Les probabilités cinematiques et dynamiques) Bachelier had shown that
if a random walk on the y-axis is represented as a graph in time the path was such that the
tangent of the path angle d divided by t/n became increasingly large as n increased. The paths
in the time graph got more and more vertical with increasing n but the resulting distribution
of where the drunkard might be became increasingly regular. Lévy had been asked by Maurice
Gevrey, then professor of Mechanics at Dijon, to comment on this single page from Bachelier’s

Market appreciation
A few well-known names provide their view on Bachelier’s influence

’Regarding Bachelier, his life is the beginning of a wonderful fascination of academics, mostly
physicists and later the probabilists, with the stock market. There is a new book coming out
by Emanuel Derman on his experiences moving from physics to Wall Street. Although I haven’t
read it, I have heard excerpts, and I suspect that we will learn that many of the motivations
of Bachelier are alive and well today. Also, I think due credit has to be given to the academic
peers, Poincaré of course in Bachelier’s case, for allowing people to work on such ‘‘bastard’’
topics.’ Alan Lewis

‘To me one important aspect of the Bachelier story is that, as far as I understand it, he
himself never had the satisfaction of hearing his work praised to the skies or getting associated
material rewards—and nothing we can do or say now can change that. It’s sad and sobering,
and makes one reflect on the importance of thinking for yourself and of respecting others’
independent thoughts. On a professional level, like everyone else, I think the main point is the
power of a very simple idea—a random Bachelier-motion walk, completely defined by its drift
and volatility—to explain vast realms of financial behavior. Where I differ is that I believe
that one simple ‘friendly amendment’ to the Bachelier worldview—namely that fundamentals
occasionally shift from one Bachelier-type process to another without clear signal—explains
nearly all of the puzzles that ordinary Bachelier processes can’t explain. Again I regard this as
a friendly amendment—it increases my respect for Bachelier’s core approach.’ Kent Osband
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1913 paper. Bachelier, as we have noted often took shortcuts in his work, and both Gevrey and
Lévy merely scanned the paper without recourse to looking at the original thesis. Lévy concluded
that Bachelier had made a mistake by making the tangent of the path constant. The problem in
Bachelier’s style was that he often skipped details that were obvious to him but perhaps not to
others. He only made these details explicit in his thesis.

Bachelier was distraught, but Lévy was for a long time unrepentant. Despite the fact that
Bachelier had by then published numerous papers on the subject of probability, plus the two books,
Lévy was totally oblivious to him. In his memoirs of 1970 Quelques aspects de la pensée d’un
mathematicien, Lévy reports the following revelation. ‘. . .in 1931, when reading Kolmogorov’s
fundamental paper, I came to “der Bacheliers Fall”. I looked up Bachelier’s works, and saw
that this error, which is repeated everywhere, does not prevent him from obtaining results that
would have been correct if only, instead of v = constant, he had written v = cτ−1/2, and that
prior to Einstein and prior to Wiener, he happens to have seen some important properties of the
so-called Wiener or Wiener–Lévy function, namely the diffusion equation and the distribution of
max0<τ<t X(t).’

Bachelier rediscovered

It was a chance rediscovery in Chicago that brought Bachelier’s
worldview to light

Bachelier’s work influenced the influential, there is no doubt about this. In An Introduction to
Probability Theory and its Applications, William Feller writes,

‘Credit for discovering the connection between random walks and diffusion is due principally
to L. Bachelier. His work is frequently of a heuristic nature, but he derived many new results.
Kolmogorov’s theory of stochastic processes of Markov type is based largely on Bachelier’s
ideas.’

Kolmogorov and Doob both referenced Bachelier, whilst Ito has acknowledged that Bache-
lier’s work influenced him more than Wiener’s. However, outside of these seekers of knowledge,
due to the elitist tendencies amongst the Paris academics Bachelier’s works were neglected
and overlooked.

A rebirth occurred in the early 1950s when a mathematical statistician at Chicago University,
Jimmy Savage, chanced upon a copy of Bachelier in the library. He was so excited by what
he’d found he immediately sent off memos to around twenty academics across the States. One
of the recipients of this memo was the eminent economist Paul Samuelson, who was already
familiar with Bachelier’s name but this time looked up the work in the MIT library.

Sixty-five years after Bachelier had assumed that prices must fluctuate randomly, Samuelson
published proof that properly anticipated prices must fluctuate randomly in Industrial Manage-
ment Review in 1965, the paper that, along with one by Fama, introduced the Efficient Markets
Hypothesis. Samuelson also reiterates the assumption that prices follow a martingale—which
Bachelier implicitly assumed. He later explained that Bachelier’s model failed to ensure that
stock prices were always positive—however, geometric Brownian motion, the cornerstone of
the Black–Scholes–Merton view—solves this problem.
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After this catastrophe, for which in later years Lévy did apologize, Bachelier finally was offered
a permanent post at Besançon in 1927. He retired ten years later and died in 1946 aged 76.

Brilliant Bachelier
Treasurer of the Bachelier Finance Society, and a winner at the first Wilmott Awards,
Peter Carr (Bloomberg LP) looks at the works of Bachelier .

In my humble opinion, Bachelier wrote the best doctoral dissertation in the history of both
probability theory and finance. It is well known that his 1900 dissertation introduced efficient
markets, Brownian motion, and option pricing theory to the world. It is less well known that in
this dissertation, one can find informal discussions of stopping times, martingales, and arbitrage.
One can also find a formal derivation of the probability density function (PDF) for the first
passage time of Brownian motion to a given level. Although confined to the context of driftless
Brownian motion, one also finds the first appearance of the Kolmogorov backward equation, the
Chapman–Kolmogorov equation, and the notion of implied volatility. There are also many other
seminal ideas in his dissertation, as this note will endeavor to elucidate.

To guide his assumptions and to reach his conclusions, Bachelier assumed as his fundamental
pricing principle that ‘the mathematical expectation of the speculator is zero’. In other words,
asset prices should be such that average ex-post profit from any asset position should be neither
positive nor negative. While this notion is routinely challenged in modern financial economics,
I am not personally convinced that it is invalid in a setting of zero net supply and infinite
trading opportunities. At any rate, we now know that this principle is equivalent to no arbitrage
provided that the mathematical expectation in question is risk-neutral, i.e. the probabilities used
to calculate it are implied from contemporaneous market prices, rather than assessed historically
or subjectively.

Assuming zero interest rates for simplicity, Bachelier further assumed that at each future time
t > 0, the spot price St of the underlying asset is normally distributed with constant known mean
S0 and increasing variance a2t . To compactly express Bachelier’s option pricing formulas, let
mt ≡ St − K denote the moneyness at t when valuing a call of strike K and let mt ≡ K − St

denote the moneyness at t when valuing a put of strike K .
Then a straightforward calculation yields that the probability that the final moneyness mT

exceeds a given level m is given by:

Pr(mT > m) = N

(
m0 − m

s

)
, (1)

where

N(d) ≡
∫ d

−∞

e−z2/2

√
2π

dz

denotes the standard normal distribution function and s ≡ a
√

T is the standard deviation of ST .
The payoff on a European option maturing at T is m+

T = ∫ ∞
0 1(mT > m) dm and so integrat-

ing (1) on m from 0 to ∞ gives the expected payoff, which from Bachelier’s fundamental pricing
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principle is the initial option price. After some straightforward manipulations, the theoretical initial
value � of a T -maturity European option is given by:

�(m0, s) = m0N
(m0

s

)
+ sN ′

(m0

s

)
. (2)

Note that this formula depends only on the mean m0 and the standard deviation s of mT . To
interpret this formula, note from setting m = 0 in (1) that N(m0/s) appearing in (2) is just the
probability of finishing in-the-money. Although Bachelier was not focused on hedging, it is also
the absolute value of the option’s delta

�(m0, s) ≡ ∂

∂S0
�(m0, s).

Differentiating again w.r.t. S0 implies that

1

s
N ′(m0/s)

is both the option’s gamma

�(m0, s) ≡ ∂

∂S0
�(m0, s)

and the probability density function (PDF) of ST at K . Hence, the initial option value satisfies:

�(m0, s) = m0Pr{mT > 0} + s2 Pr{ST ∈ dK}
dK

= m0|�(m0, s)| + s2�(m0, s). (3)

To obtain the needed s input, Bachelier notes that his formula (2) simplifies dramatically for an
option which is initially at-the-money (ATM). Setting m0 = 0 in (2) yields:

A ≡ �(0, s) = s√
2π

, (4)

since N ′(0) = 1√
2π

.

Inverting this relation gives an exact expression relating the Bachelier implied volatility to the
market price of the ATM option:

s =
√

2πA. (5)

Substituting (5) in (2) shows that the value of an away-from-the-money option depends only
on the observable prices of the underlying asset and an ATM option:

� = m0N

(
m0√
2πA

)
+

√
2πAN ′

(
m0√
2πA

)
. (6)
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Notice that the instantaneous volatility a and the total standard deviation s are both irrelevant
given these two market prices.

Bachelier also calculates the probability that the buyer of an ATM option makes a profit. This
is the probability that mT exceeds A when m0 = 0.

Substituting (4) in (1) implies that:

Pr(mT > A) = N

(
− 1√

2π

)
≈ .345. (7)

Amazingly, this probability is a pure number independent of the underlying price, the instan-
taneous volatility, the option maturity, and even the price paid for the ATM option.

As a final demonstration of the convenience of the Bachelier model, suppose that barrier options
were available in Bachelier’s time. A down-and-out call (DOC) is just a standard call that knocks
out if the underlying crosses a pre-specified barrier H < S0. Although Bachelier determines the
survival probability, these path-dependent options are more easily valued as follows. Suppose that
we form a simple portfolio which is long a standard call of strike K and short a standard put of
strike 2H − K . Notice that the average of the two strikes is the barrier H .

If the underlying avoids the barrier by maturity, then the portfolio provides the call payoff,
since the put necessarily finishes out-of-the-money.

If the underlying touches or crosses the barrier before maturity, then at the first passage time,
the underlying is at the barrier due to the continuity of its price process. As a result, the long
call and the short put have the same moneyness of H − K at this first passage time. Since (2)
applies to both put and call values, the short put has the same absolute value as the long call. It
follows that the portfolio value vanishes at the first passage time, irrespective of the latter’s exact
realization before T .

We conclude from Bachelier’s fundamental pricing principle that the initial value of the DOC
is just given by the difference between the initial call premium and the initial put premium. As
in (6), the normal instantaneous volatility a and the total standard deviation s are irrelevant given
these prices.

Up to this point, we have been exploring Bachelier’s model which assumes that the normal
instantaneous volatility is constant over time, even if we didn’t need to know its exact value
in the presence of market prices. Using the modern language of stochastic differential equations
invented later by Ito, Bachelier assumed that the stock price obeys:

St = S0 + aWt , t ∈ [0, T ], (8)

where a is the constant normal volatility and W is standard Brownian motion.
In fact, all of Bachelier’s results require only minor modification if the normal instantaneous

volatility is time-varying, i.e.:

St = S0 +
∫ T

0
at dWt , t ∈ [0, T ]. (9)

If the normal volatility at is just a deterministic function of time, then Bachelier’s option

pricing formula in (2) remains valid with s replaced by sT ≡
√∫ T

0 at dt . If at is more generally
a continuous time stochastic process, then sT becomes random, so further changes are needed
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to obtain deterministic option prices. For the results which follow, we will require no knowl-
edge of the stochastic process {at , t ∈ [0, T ]} other than that it evolves independently of the
spot price. In particular, the normal volatility at can jump and it need not be Markov in itself
and time.

If we condition on the instantaneous volatility path to T , then sT is again deterministic. As
a consequence, the theoretical value of an option under stochastic (independent instantaneous
normal) volatility is given by:

�sv(m0) =
∫ ∞

0
�(m0, s)q(s) ds, (10)

where the Bachelier pricing formula �(m0, s) is defined in (2) and q(s) is the probability density
of sT at s. If we treat the LHS as the observable market prices of T -maturity European options
of all initial moneyness levels m0, then one can interpret (10) as an integral equation with ker-
nel �(m0, s) multiplying the unknown function q(s). Using integral transforms, then one can
analytically invert (10) for the PDF q(s) of sT . This density can be used to consistently price
European-style derivatives on the realized standard deviation.

In particular, setting m0 = 0 in (10) implies:

Asv ≡ �sv(0) =
∫ ∞

0

s√
2π

q(s) ds = 1√
2π

EsT . (11)

Consider a forward contract on realized standard deviation with final payoff sT − s0 where s0

is initially chosen so that the contract has zero cost to enter.
From Bachelier’s fundamental pricing principle, the forward price of the realized standard

deviation is:

s0 = EsT =
√

2πAsv, (12)

from (11). From (5), this is just the Bachelier implied volatility obtained from the ATM option of
the same maturity as the volatility swap. What could be simpler? Using a conditioning argument,
the probability that an initially ATM option finishes in-the-money is still the pure number

N

(
− 1√

2π

)
≈ 0.345.

Similarly, the DOC is still priced by the difference between the initial premium of the call struck
at K and the put struck at 2H − K . There are yet other results for less liquid exotics such as
passport options and lookback options. In the interests of brevity, let’s save those for another time.

For more information on Bachelier, I recommend Mandelbrot (1987), Taqqu (2001), and
Schachermayer (2003). Mandelbrot wrote an entry on Bachelier on page 86 of the Finance Volume
of the New Palgrave Dictionary of Economics. Taqqu expanded on his conversations with a his-
torian of probability theory named Bernard Bru in (2001). Schachermayer does a wonderful job
surveying Bachelier’s thesis in a survey article on derivatives pricing, which can be downloaded
from www.fam.tuwien.ac.at/∼wschach/pubs. Of course, nothing beats reading Bache-
lier’s dissertation, which was originally written in French. His dissertation was first translated into
English in 1964 and this translation appears appropriately as Chapter 1 in Cootner (1964). This
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classic book of readings is available at www.riskbooks.com, where an introduction by Andy
Lo can be freely downloaded. It is part of the folklore of economics that Bachelier’s works were
lost to the world until being rediscovered in the 1950s.

Supposedly, Bachelier’s insights had been rediscovered by the time his work was found (see
e.g. Bernstein (1992), Boyle and Boyle (2001)). However, Lévy, Kolmogorov, and Ito all knew
of Bachelier’s work well before the 1950s. Merton brought Ito calculus to finance and used it
to derive the hedging argument at the heart of this trillion-dollar industry. So one has to wonder
how the world might be different if Bachelier’s dissertation really did disappear more than a
century ago.

Since its rediscovery, Bachelier’s work on option pricing has been faulted for giving positive
probabilities to negative prices. Underlying this criticism is a somewhat baseless philosophy that
there is a true stochastic process governing asset prices and the goal of research is to find it. A
more pragmatic view is that there is a current industry practice and the goal of research is to
improve it. On the question of whether Bachelier’s dissertation succeeded on this dimension in
1900, the answer can be found in the (English translation of the) text that ends it: ‘It is evident that
the present theory resolves the majority of problems in the study of speculation by the calculus
of probability.’
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3
The Collector: Know
Your Weapon—Part 1∗
Espen Gaarder Haug

T
rading options is War! For an option trader a pricing or hedging formula is just like
a weapon. A soldier who has perfected her pistol shooting1 can beat a guy with a
machine gun that doesn’t know how to handle it. Similarly, an option trader knowing
the ins and outs of the Black–Scholes–Merton (BSM) formula can beat a trader using
a state-of-the-art stochastic volatility model. It comes down to two rules, just as in

war. Rule number one: Know your weapon. Rule number two: Don’t forget rule number one. In
my ten+ years as a trader I have seen many a BSD2 option trader getting confused with what
the computer was spitting out. They often thought something was wrong with their computer
system/implementation. Nothing was wrong, however, except their knowledge of their weapon.
Before you move on to a more complex weapon (like a stochastic volatility model) you should
make sure you know conventional equipment inside-out. In this installment I will not show the
nerdy quants how to come up with the BSM formula using some new fancy mathematics—you
don’t need to know how to melt metal to use a gun. Neither is it a guideline on how to trade. It
is meant rather like a short manual of how your weapon works in extreme situations. Real war
(trading)—the pain, the pleasure, the adrenaline of winning and losing millions of dollars—can
only be learned through real action. Now, the manual:

BSD trader Soldier, welcome to our trading team, this is your first day and I will instruct you
about the Black–Scholes weapon.

New hired trader Hah, my Professor taught me probability theory, Itô calculus, and Malli-
avin calculus! I know everything about stochastic calculus and how to come up with the
Black–Scholes formula.

BSD trader Soldier, you may know how to construct it, but that doesn’t mean you know a
shit about how it operates!

New hired trader I have used it for real trading. Before my Ph.D. I was a market maker in
stock options for a year. Besides, why do you call me soldier? I was hired as an option
trader.

∗For this chapter I got a lot of ideas from the Wilmott forum. Thanks! And especially thanks to Alexander Adamchuk,
Jørgen Haug, Hicham Mouline and James Ward for useful comments.
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BSD trader Soldier, you have not been in real war. In real war you often end up in extreme
situations. That’s when you need to know your weapon.

New hired trader I have read Liar’s Poker, Hull’s book, Wilmott on Wilmott, Taleb’s Dynamic
Hedging, Haug’s formula collection. I know about Delta Bleed and all that stuff. I don’t
think you can tell me much more. I have even read Fooled by Ran. . .

BSD trader SHUT UP, SOLDIER! If you want to survive the first six months on this trading
floor you better listen to me. On this team we don’t allow any mistakes. We are warriors,
trained in war!

New hired trader Yes, Sir!
BSD trader Good, let’s move on to our business. Today I will teach you the basics of the

Black–Scholes weapon.

1 Background on the BSM formula
Let me refresh your memory of the BSM formula

c = Se(b−r)T N(d1) − Xe−rT N(d2)

p = Xe−rT N(−d2) − Se(b−r)T N(−d1),

where

d1 = ln(S/X) + (b + σ 2/2)T

σ
√

T
,

d2 = d1 − σ
√

T ,

and

S = stock price
X = strike price of option
r = risk-free interest rate
b = cost-of-carry rate of holding the underlying security
T = time to expiration in years
σ = volatility of the relative price change of the underlying stock price
N(x) = the cumulative normal distribution function

2 Delta Greeks
2.1 Delta
As you know, the delta is the option’s sensitivity to small movements in the underlying asset
price.

�call = ∂c

∂S
= e(b−r)T N(d1) > 0

�put = ∂p

∂S
= −e(b−r)T N(−d1) < 0
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Delta higher than unity I have many times over the years been contacted by confused com-
modity traders claiming something is wrong with their BSM implementation. What they observed
was a spot delta higher than one.

As we get deep-in-the-money N(d1) approaches one, but it never gets higher than one (since
it’s a cumulative probability function). For a European call option on a non-dividend-paying
stock the delta is equal to N(d1), so the delta can never go higher than one. For other options
the delta term will be multiplied by e(b−r)T . If this term is larger than one and we are deep-
in-the-money we can get deltas considerably higher than one. This occurs if the cost-of-carry is
larger than the interest rate, or if interest rates are negative. Figure 1 illustrates the delta of a call
option. As expected the delta reaches above unity when time to maturity is large and the option
is deep-in-the-money.

Figure 1: Spot delta

2.2 Delta mirror strikes and asset

For a put and call to have the same absolute delta value we can find the delta symmetric strikes as

Xp = S2

Xc

e(2b+σ 2)T , Xc = S2

Xp

e(2b+σ 2)T .

That is

�c(S, Xc, T , r, b, σ ) = −�p

(
S,

S2

Xc

e(2b+σ 2)T , T , r, b, σ

)
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where Xc is the strike of the call and Xp is the strike of a put. These relationships are useful
to determine strikes for delta neutral option strategies, especially for strangles, straddles, and
butterflies. The weakness of this approach is that it works only for a symmetric volatility smile.
In practice, however, you often only need an approximately delta neutral strangle. Moreover,
volatility smiles are often more or less symmetric in the currency markets.

In the special case of a straddle-symmetric-delta-strike, described by Wystrup (1999), the
formulas above can be simplified further to

Xc = Xp = Se(b+σ 2/2)T .

Related to this relationship is the straddle-symmetric-asset-price. Given the identical strikes for a
put and call, for what asset price will they have the same absolute delta value? The answer is

S = Xe(−b−σ 2/2)T .

At this strike and delta-symmetric-asset-price the delta is e(b−r)T

2 for a call, and − e(b−r)T

2 for a
put. Only for options on non-dividend paying stocks3 (b = r) can we simultaneously have an
absolute delta of 0.5 (50%) for a put and a call. Interestingly, the delta symmetric strike is
also the strike given the asset price where the gamma and vega are at their maximums, ceteris
paribus. The maximal gamma and vega, as well as the delta neutral strikes, are not at-the-money
forward as I have noticed has been assumed by many traders. Moreover, an in-the-money put
can naturally have absolute delta lower than 50% while an out-of-the-money call can have delta
higher than 50%.

For an option that is at the straddle-symmetric-delta-strike the generalized BSM formula can
be simplified to

c = Se(b−r)T

2
− Xe−rT N(−σ

√
T ),

and

p = Xe−rT N(σ
√

T ) − Se(b−r)T

2
.

At this point the option value will not change based on changes in cost of carry (dividend yield
etc.). This is as expected as we have to adjust the strike accordingly.

2.3 Strike from delta

In several OTC (over-the-counter) markets options are quoted by delta rather than strike. This
is a common quotation method in, for example, the OTC currency options market, where one
typically asks for a delta and expects the sales person to return a price (in terms of volatil-
ity or pips) as well as the strike, given a spot reference. In these cases one needs to find the
strike that corresponds to a given delta. Several option software systems solve this numerically
using Newton–Raphson or bisection. This is actually not necessary, however. Using an inverted
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cumulative normal distribution N−1(·) the strike can be derived from the delta analytically as
described by Wystrup (1999). For a call option

Xc = S exp[−N−1(�ce
(r−b)T )σ

√
T + (b + σ 2/2)T ],

and for a put we have

Xp = S exp[N−1(−�pe(r−b)T )σ
√

T + (b + σ 2/2)T ].

To get a robust and accurate implementation of this formula it is necessary to use an accurate
approximation of the inverse cumulative normal distribution. I have used the algorithm of Moro
(1995) with good results.

2.4 DdeltaDvol and DvegaDspot

DdeltaDvol: ∂�
∂σ

which mathematically is the same as DvegaDspot: ∂vega
∂S

, a.k.a. Vanna,4 shows
approximately how much your delta will change for a small change in the volatility, as well as
how much your vega will change with a small change in the asset price:

DdeltaDvol = ∂c

∂S∂σ
= −e(b−r)T d2

σ
n(d1)

= ∂p

∂S∂σ
= e(b−r)T d2

σ
n(d1),

where n(x) is the standard normal density

n(x) = 1√
2π

e−x2/2.

One fine day in the dealing room my risk manager asked me to get into his office. He asked me
why I had a big outright position in some stock index futures—I was supposed to do ‘arbitrage
trading’. That was strange as I believed I was delta neutral: long call options hedged with short
index futures. I knew the options I had were far out-of-the-money and that their DdeltaDvol
was very high. So I immediately asked what volatility the risk management used to calculate
their delta. As expected, the volatility in the risk-management-system was considerably below the
market and again was leading to a very low delta for the options. This example is just to illustrate
how a feeling of your DdeltaDvol can be useful. If you have a high DdeltaDvol the volatility you
use to compute your deltas becomes very important.5

Figure 2 illustrates the DdeltaDvol. As we can see the DdeltaDvol can assume positive and
negative values. DdeltaDvol attains its maximal value at

SL = Xe−bT −σ
√

T
√

4+T σ 2/2,

and attains its minimal value when

SU = Xe−bT +σ
√

T
√

4+T σ 2/2.
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Figure 2: DdeltaDvol

Similarly, given the asset price, options with strikes XL have maximum negative DdeltaDvol at

XL = SebT −σ
√

T
√

4+T σ 2/2,

and options with strike XU have maximum positive DdeltaDvol when

XU = SebT +σ
√

T
√

4+T σ 2/2.

One naturally can ask if these measures have any meaning. Black and Scholes assumed constant
volatility, or at most deterministic volatility. Despite being theoretically inconsistent it might well
be a good approximation. How good an approximation it is I leave up to you to find out or discuss
at the Wilmott forum, www.wilmott.com. For more practical information about DvegaDspot or
Vanna see Webb (1999).

2.5 DdeltaDtime, Charm

DdeltatDtime, a.k.a. Charm (Garman 1992) or Delta Bleed (a term used in the excellent book by
Taleb 1997), is delta’s sensitivity to changes in time,

−∂�c

∂T
= −e(b−r)T

[
n(d1)

(
b

σ
√

T
− d2

2T

)

+ (b − r)N(d1)] ≤≥ 0,
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Figure 3: Charm

and

−∂�p

∂T
= −e(b−r)T

[
n(d1)

(
b

σ
√

T
− d2

2T

)

− (b − r)N(−d1)] ≤≥ 0.

This Greek gives an indication of what happens with delta when we move closer to maturity.
Figure 3 illustrates the Charm value for different values of the underlying asset and different times
to maturity.

As Nassim Taleb points out one can have both forward and backward bleed. He also points
out the importance of taking into account how expected changes in volatility over the given time
period will affect delta. I am sure most readers already have his book in their collection (if not,
order it now!). I will therefore not repeat all his excellent points here.

All partial derivatives with respect to time have the advantage over other Greeks in that we
know which direction time will move. Moreover, we know that time moves at a constant rate.
This is in contrast, for example, to the spot price, volatility, or interest rate.6

2.6 Elasticity
The elasticity of an option, a.k.a. the option leverage, omega, or lambda, is the sensitivity in
percent to a percent movement in the underlying asset price. It is given by

�call = �call

S

call
= e(b−r)T N(d1)

S

call
> 1

�put = �put

S

put
= −e(b−r)T N(−d1)

S

put
< 0
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The option’s elasticity is a useful measure on its own, as well as to estimate the volatility, beta,
and expected return from an option.

Option volatility The option volatility σo can be approximated using the option elasticity. The
volatility of an option over a short period of time is approximately equal to the elasticity of the
option multiplied by the stock volatility σ .7

σo ≈ σ |�|.

Option beta The elasticity is also useful to compute the option’s beta. If asset prices follow
geometric Brownian motions the continuous-time capital asset pricing model of Merton (1971)
holds. Expected asset returns then satisfy the CAPM equation

E[return] = r + E[rm − r]βi

where r is the risk-free rate, rm is the return on the market portfolio, and βi is the beta of the
asset. To determine the expected return of an option we need the option’s beta. The beta of a call
is given by see for instance Jarrow and Rudd (1983)

βc = S

call
�cβS,

where βS is the underlying stock beta. For a put the beta is

βp = S

put
�pβS.

For a beta neutral option strategy the expected return should be the same as the risk-free rate (at
least in theory).

Option Sharpe ratios As the leverage does not change the Sharpe (1966) ratio, the Sharpe ratio
of an option will be the same as that of the underlying stock,

µo − r

σo

= µS − r

σ

where µo is the return of the option, and µS is the return of the underlying stock. This relationship
indicates the limited usefulness of the Sharpe ratio as a risk-return measure for options (?). Shorting
a lot of deep out-of-the-money options will likely give you a ‘nice’ Sharpe ratio, but you are almost
guaranteed to blow up one day (with probability one if you live long enough). An interesting
question here is should you use the same volatility for all strikes? For instance deep-out-of-the-
money stock options typically trade for much higher implied volatility than at-the-money options.
Using the volatility smile when computing Sharpe ratios for deep out-of-the-money options can
also possibly make the Sharpe ratio work better for options. McDonald (2002) offers a more
detailed discussion of option Sharpe ratios.
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3 Gamma Greeks
3.1 Gamma

Gamma is the delta’s sensitivity to small movements in the underlying asset price. Gamma is
identical for put and call options, ceteris paribus, and is given by

�call,put = ∂2c

∂S2
= ∂2p

∂S2
= n(d1)e

(b−r)T

Sσ
√

T
> 0

This is the standard gamma measure given in most textbooks (Haug 1997, Hull 2000, Wilmott
2000).

3.2 Maximal gamma and the illusions of risk

One day in the trading room of a former employer of mine, one of the BSD traders suddenly
got worried over his gamma. He had a long dated deep-out-of-the-money call. The stock price
had been falling, and the further the out-of-the-money the option went the lower the gamma he
expected. As with many option traders he believed the gamma was largest approximately at-the-
money-forward. Looking at his Bloomberg screen, however, the further out-of-the-money the call
went the higher his gamma got. Another BSD was coming over, and they both tried to come up
with an explanation for this. Was there something wrong with Bloomberg?

In my own home-built system I was often playing around with three- and four-dimensional
charts of the option Greeks, and I already knew that gamma doesn’t attain its maximum at-the-
money-forward (four dimensions? a dynamic three-dimensional graph). I didn’t know exactly
where it attained its maximum, however. Instead of joining the BSD discussion, I did a few
computations in Mathematica. A few minutes later, after double checking my calculations, I
handed over an equation to the BSD traders showing exactly where the BSM gamma would be
at its maximum.

How good is the rule of thumb that gamma is largest for at-the-money or at-the-money-forward
options? Given a strike price and time to maturity, the gamma is at maximum when the asset
price is8

S� = Xe(−b−3σ 2/2)T .

Given the asset price and time to maturity, gamma is maximal when the strike is

X� = Se(b+σ 2/2)T .

Confused option traders are bad enough, confused risk management is a pain in the behind. Several
large investment firms impose risk limits on how much gamma you can have. In the equity market
it is common to use the standard textbook approach to compute gamma, as shown above. Putting
on a long-term call (put) option that later is deep-out-of-the-money (in-the-money) can blow up
the gamma risk limits, even if you actually have close to zero gamma risk. The high gamma risk
for long dated deep-out-of-the-money options typically is only an illusion. This illusion of risk
can be avoided by looking at percentage changes in the underlying asset (gammaP), as is typically
done for FX options.
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Saddle gamma Alexander (Sasha) Adamchuk was the first to make me aware of the fact that
gamma has a saddle point.9 The saddle point is attained for the time10

TS = 1

2(σ 2 + 2b − r)
,

and at asset price

S� = Xe(−b−3σ 2/2)TS .

The gamma at this point is given by

�S = �(S�, TS) =
√

e
π

√
2b−r

σ 2 + 1

X

Many traders get surprised by this feature of gamma—that gamma is not necessarily decreasing
with longer time to maturity. The maximum gamma for a given strike price is first decreasing
until the saddle gamma point, then increasing again, given that we follow the edge of the maximal
gamma asset price.

Figure 4 shows the saddle gamma. The saddle point is between the two gamma ‘mountain’
tops. This graph also illustrates one of the big limitations in the textbook gamma definition, which
is actually in use by many option systems and traders. The gamma increases dramatically when
we have long time to maturity and the asset price is close to zero. How can the gamma be larger
than for an option closer to at-the-money? Is the real gamma risk that big? No, this is in most

Figure 4: Saddle gamma
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cases simply an illusion, due to the above unmotivated definition of gamma. Gamma is typically
defined as the change in delta for a one unit change in the asset price. When the asset price is
close to zero a one unit change is naturally enormous in percent of the asset price. In this case
it is also highly unlikely that the asset price will increase by one dollar in an instant. In other
words, the gamma measurement should be reformulated, as many option systems already have
done. It makes far more sense to look at percentage moves in the underlying than unit moves.
To compare gamma risk from different underlyings one should also adjust for the volatility in the
underlying.

3.3 GammaP

As already mentioned, there are several problems with the traditional gamma definition. A better
measure is to look at percentage changes in delta for percentage changes in the underlying,11 for
example a 1% point change in underlying. With this definition we get for both puts and calls
(gamma percent)

�P = S�

100
> 0. (3.1)

GammaP attains a maximum at an asset price of

S�P
= Xe(−b−σ 2/2)T .

Alternatively, given the asset price the maximal �P occurs at strike

X�P
= Se(b+σ 2/2)T .

Interestingly, this is also where we have a straddle symmetric asset price as well as maximal
gamma. This implies that a delta neutral straddle has maximal �P . In most circumstances going
from measuring the gamma risk as �P instead of gamma we avoid the illusion of a high gamma
risk when the option is far out-of-the-money and the asset price is low. Figure 5 is an illustration
of this, using the same parameters as in Figure 4.

If the cost-of-carry is very high it is still possible to experience high �P for deep-out-of-the-
money call options with a low asset price and a long time to maturity. This is because a high
cost-of-carry can make the ratio of a deep-out-of-the money call to the spot close to the at-the-
money-forward. At this point the spot-delta will be close to 50% and so the �P will be large.
This is not an illusion of gamma risk, but a reality. Figure 6 shows �P with the same parameters
as in Figure 5, with cost-of-carry of 60%.

To makes things even more complicated, the high �P we can have for deep-out-of-the-money
calls (in-the-money puts) is the only case when we are dealing with spot gammaP (change in spot
delta). We can avoid this by looking at future/forward gammaP. However, if you hedge with spot,
then spot gammaP is the relevant metric. Only if you hedge with the future/forward the forward
gammaP is the relevant metric. The forward gammaP we have when the cost-of-carry is set to
zero, and the underlying asset is the futures price.
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Figure 5: GammaP

Figure 6: Saddle gammaP

3.4 Gamma symmetry

Given the same strike the gamma is identical for both put and call options. Although this equality
breaks down when the strikes differ, there is a useful put and call gamma symmetry. The put-call
symmetry of Bates (1991) and Carr and Bowie (1994) is given by

c(S, X, T , r, b, σ ) = X

SebT
p(S,

(SebT )2

X
, T , r, b, σ ).
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This put-call value symmetry yields the gamma symmetry; however, the gamma symmetry is
more general as it is independent of whether the option is a put or call, for example it could be
two calls, two puts, or a put and a call.

�(S, X, T , r, b, σ ) = X

SebT
�(S,

(SebT )2

X
, T , r, b, σ ).

Interestingly, the put-call symmetry also gives us vega and cost-of-carry symmetries, and in the
case of zero cost-of-carry also theta and rho symmetry. Delta symmetry, however, is not obtained.

3.5 DgammaDvol, Zomma

DgammaDvol, a.k.a. Zomma, is the sensitivity of gamma with respect to changes in implied
volatility. In my view, DgammaDvol is one of the more important Greeks for options trading. It
is given by

DgammaDvolcall,put = ∂�

∂σ

= �

(
d1d2 − 1

σ

)
≤≥ 0.

For the gammaP we have DgammaPDvol

DgammaPDvolcall,put = �P

(
d1d2 − 1

σ

)
≤≥ 0

where � is the textbook Gamma of the option.
For practical purposes, where one typically wants to look at DgammaDvol for a one unit

volatility change, for example from 30% to 31%, one should divide the DGammaDVol by 100.
Moreover, DgammaDvol and DgammaPDvol are negative for asset prices between SL and SU

and positive outside this interval, where

SL = Xe−bT −σ
√

T
√

4+T σ 2/2,

SU = Xe−bT +σ
√

T
√

4+T σ 2/2.

For a given asset price the DgammaDvol and DgammaPDvol are negative for strikes between

XL = SebT −σ
√

T
√

4+T σ 2/2

and

XU = SebT +σ
√

T
√

4+T σ 2/2,

and positive for strikes above XU or below XL, ceteris paribus. In practice, these points will
change with other variables and parameters. These levels should, therefore, be considered good
approximations at best.
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In general you want positive DgammaDvol—especially if you don’t need to pay for it (flat
volatility smile). In this respect DgammaDvol actually offers a lot of intuition for how stochastic
volatility should affect the BSM values (?). Figure 7 illustrates this point. The DgammaDvol
is positive for deep-out-of-the-money options, outside the SL and SU interval. For at-the-money
options and slightly in- or out-of-the-money options the DgammaDvol is negative. If the volatility
is stochastic and uncorrelated with the asset price then this offers a good indication for which
strikes you should use higher/lower volatility when deciding on your volatility smile. In the case
of volatility correlated with the asset price this naturally becomes more complicated.

Figure 7: DgammaDvol

3.6 DgammaDspot, Speed

I have heard rumors about how being on speed can help see higher dimensions that are ignored
or hidden for most people. It should be of little surprise that in the world of options the third
derivative of the option price with respect to spot, known as Speed, is ignored by most people.
Judging from his book, Nassim Taleb is also a fan of higher-order Greeks. There he mentions
Greeks of up to seventh order.

Speed was probably first mentioned by Garman (1992),12 for the generalized BSM formula
we get

∂3c

∂S3
= −

�
(

1 + d1
σ
√

T

)
S

.

A high Speed value indicates that the gamma is very sensitive to moves in the underlying asset.
Academics typically claim that third- or higher-order ‘Greeks’ are of no use. For an option trader,
on the other hand, it can definitely make sense to have a sense of an option’s Speed. Interestingly,
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Speed is used by Fouque et al. (2000) as a part of a stochastic volatility model adjustment. More
to the point, Speed is useful when gamma is at its maximum with respect to the asset price.
Figure 8 shows the graph of Speed with respect to the asset price and time to maturity.

Figure 8: Speed

For �P we have an even simpler expression for Speed, that is SpeedP (Speed for percentage
gamma)

SpeedP = −�
d1

100σ
√

T
.

3.7 DgammaDtime, Colour
The change in gamma with respect to small changes in time to maturity, DGammaDtime, a.k.a.
GammaTheta or Colour (Garman 1992), is given by (assuming we get closer to maturity):

− ∂�

∂T
= e(b−r)T n(d1)

Sσ
√

T

(
r − b + bd1

σ
√

T
+ 1 − d1d2

2T

)

= �

(
r − b + bd1

σ
√

T
+ 1 − d1d2

2T

)
≤≥ 0.

Divide by 365 to get the sensitivity for a one day move. In practice one typically also takes into
account the expected change in volatility with respect to time. If you, for example on Friday are
wondering how your gamma will be on Monday you typically will also assume a higher implied
volatility on Monday morning. For �P we have DgammaPDtime

−∂�P

∂T
= �P

(
r − b + bd1

σ
√

T
+ 1 − d1d2

2T

)
≤≥ 0.
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Figure 9: DgammaDtime

Figure 9 illustrates the DgammaDtime of an option with respect to varying asset price and time
to maturity.

4 Numerical Greeks
So far we have looked only at analytical Greeks. A frequently used alternative is to use numerical
Greeks. Most first-order partial derivatives can be computed by the two-sided finite difference
method

c(S + �S, X, T , r, b, σ ) − c(S − �S, X, T , r, b, σ )

2�S
.

In the case of derivatives with respect to time, we know what direction time will move and it is
more accurate (for what is happening in the ‘real’ world) to use a backward derivative

� ≈ c(S, X, T , r, b, σ ) − c(S, X, T − �T, r, b, σ )

�T
.

Numerical Greeks have several advantages over analytical ones. If for instance we have a sticky
delta volatility smile then we can also change the volatilities accordingly when calculating the
numerical delta. (We have a sticky delta volatility smile when the shape of the volatility smile
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sticks to the deltas but not to the strike; in other words the volatility for a given strike will move
as the underlying moves.)

�c ≈ c(S + �S, X, T , r, b, σ1) − c(S − �S, X, T , r, b, σ2)

2�S
.

Numerical Greeks are moreover model independent, while the analytical Greeks presented above
are specific to the BSM model.

For gamma and other second derivatives, ∂2f

∂x2 , for example DvegaDvol, we can use the central
finite difference method

� ≈ c(S + �S, . . .) − 2c(S, . . .) + c(S − �S, . . .)

�S2
.

If you are very close to maturity (a few hours) and you are approximately at-the-money the
analytical gamma can approach infinity, which is naturally an illusion of your real risk. The
reason is simply that analytical partial derivatives are accurate only for infinite small changes,
while in practice one sees only discrete changes. The numerical gamma solves this problem and
offers a more accurate gamma in these cases. This is particularly true when it comes to barrier
options (Taleb 1997).

For Speed and other third-order derivatives, ∂3f

∂x3 , we can, for example, use the following
approximation

Speed ≈ 1

�S3
[c(S + 2�S, . . .) − 3c(S + �S, . . .)

+3c(S, . . .) − c(S − �S, . . .)].

What about mixed derivatives, ∂f

∂x∂y
, for example DdeltaDvol and Charm. This can be calculated

numerical by DdeltaDvol

≈ 1

4�S�σ
[c(S + �S, . . . , σ + �σ)

−c(S + �S, . . . , σ − �σ) − c(S − �S, . . . , σ + �σ)

+c(S − �S, . . . , σ − �σ)].

In the case of DdeltaDvol one would ‘typically’ divide it by 100 to get the ‘right’ notation.

End Part 1

BSD trader That is enough for today soldier.
New hired trader Sir, I learned a few things today. Can I start trading now?
BSD trader We don’t let fresh soldiers play around with ammunition (capital) before they

know the basics of a conventional weapon like the Black–Scholes formula.
New hired trader Understood, Sir!
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BSD trader Next time I will tell you about Vega-kappa, probability Greeks and some other
stuff. Until then you are dismissed! Now bring me a double cheeseburger with a lot of
fries!

New hired trader Yes, Sir!

FOOTNOTES & REFERENCES

1. The author was among the best pistol shooters in Norway.
2. If you don’t know the meaning of this expression, BSD, then it’s high time you read Michael
Lewis’ Liar’s Poker.
3. And naturally also for commodity options in the special case where cost-of-carry equals r.
4. I wrote about the importance of this Greek variable back in 1992. It was my second paper
about options, and my first written in English. Well, it got rejected. What could I expect?
Most people totally ignored DdeltaDvol at that time and the paper has collected dust since
then.
5. An important question naturally is what volatility you should use to compute your deltas.
I will not give you an answer to that here, but there has been discussions on this topic at
www.wilmott.com.
6. This is true only because everybody trading options at Mother Earth moves at about the
same speed, and is affected by approximately the same gravity. In the future, with huge space
stations moving with speeds significant to that of the speed of light, this will no longer hold
true. See Haug (2003a and b) for some possible consequences.
7. This approximation is used by Bensoussan et al. (1995) for an approximate valuation of
compound options.
8. Rubinstein (1990) indicates in a footnote that this maximum curvature point possibly can
explain why the greatest demand for calls tend to be just slightly out-of-the-money.
9. Described by Adamchuk at the Wilmott forum www.wilmott.com February 6, 2002,
http://www.wilmott.com/310/messageview.cfm?catid=4&threadid=664&highlight key=
y&keyword1=vanna and even earlier on his page http://finmath.com/Chicago/NAFTCORP/
Saddle Gamma.html
10. It is worth mentioning that TS must be larger than zero for the gamma to have a saddle
point, that means b must be larger then r−σ 2

2 , and r must be smaller than σ 2 + 2b.
11. Wystrup (1999) also describes how this redefinition of gamma removes the dependence on
the spot level S. He calls it ‘traders gamma’. This measure of gamma has for a long time been
popular, particularly in the FX market, but is still absent in options textbooks.
12. However, he was too ‘lazy’ to give us the formula so I had to do the boring derivation
myself.
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4
The Collector: Know
Your Weapon—Part 2∗
Espen Gaarder Haug

BSD trader Soldier, last time I told you about delta and gamma Greeks. Today I’ll enlighten
you in on Vega, theta, and probability Greeks.

New trader Sir, I already know Vega.
BSD trader Soldier, if you want to speculate on an increase in implied volatility what type

of options offer the most bang for the bucks?
New trader At-the-money options with long time to maturity.
BSD trader Soldier, you are possibly wrong on strikes and time! Now start with 20 push-ups

while I start to tell you about Vega.
New trader Yes, Sir!

1 Refreshing notation on the BSM formula
Let me also this time refresh your memory of the Black–Scholes–Merton (BSM) formula

c = Se(b−r)T N(d1) − Xe−rT N(d2)

p = Xe−rT N(−d2) − Se(b−r)T N(−d1),

where

d1 = ln(S/X) + (b + σ 2/2)T

σ
√

T
,

d2 = d1 − σ
√

T ,

∗Thanks to Jørgen Haug for useful comments.
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and

S = asset price
X = strike price
r = risk-free interest rate
b = cost-of-carry rate of holding the underlying security
T = time to expiration in years
σ = volatility of the relative price change of the underlying asset price

N(x) = the cumulative normal distribution function

2 Vega Greeks

2.1 Vega

Vega,1 also known as kappa, is the option’s sensitivity to a small change in the implied volatility.
Vega is equal for put and call options.

Vega = ∂c

∂σ
= ∂p

∂σ
= Se(b−r)T n(d1)

√
T > 0.

Implied volatility is often considered the market’s best estimate of expected volatility for the
duration of the option. It can also be interpreted as a basket of adjustments to the BSM formula,
for factors that the formula doesn’t take into account; demand and supply for that particular
strike and maturity, stochastic volatility, jumps, and more. For instance a sudden increase in the
Black–Scholes implied volatility for an out-of-the-money strike does not necessary imply that
investors expect higher volatility. The increase can just as well be due to an option ‘arbitrageur’
expecting higher volatility of volatility.

Vega local maximum When trying to profit from moves in implied volatility it is useful to know
where the option has the maximum Vega value for a given time to maturity. For a given strike
price Vega attains its maximum when the asset price is

S = Xe(−b+σ 2/2)T .

At this asset price we also have in-the-money risk neutral probability symmetry (which I come
back to later). Moreover, at this asset price the generalized Black–Scholes–Merton (BSM) formula
simplifies to

c = Se(b−r)T N(σ
√

T ) − Xe−rT

2
,

p = Xe−rT

2
− Se(b−r)T N(−σ

√
T ).

Similarly, the strike that maximizes Vega given the asset price is

X = Se(b+σ 2/2)T .
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Vega global maximum Some years back a BSD trader called me late one evening, close to
freaking out. He had shorted long-term options, which he hedged by going long short-term options.
To his surprise the long-term options’ Vega increased as time went by. After looking at my 3D
Vega chart I confirmed that this was indeed the expected behavior. For options with long term to
maturity the maximum Vega is not necessarily increasing with longer time to maturity, as many
traders believe. Indeed, Vega has a global maximum at time

TV = 1

2r
,

and asset price

SV = Xe(−b+σ 2/2)T
V = Xe

−b+σ2/2
2r .

At this global maximum, Vega itself, described by Alexander (Sasha) Adamchuk,2 is equal to the
following simple expression

Vega(SV , TV ) = X

2
√

reπ
.

Figure 1 shows the graph of Vega with respect to the asset price and time. The intuition behind
the Vega-top (Vega-mountain) is that the effect of discounting at some point in time dominates
volatility (Vega): the lower the interest rate, the lower the effect of discounting, and the higher
the relative effect of volatility on the option price. As the risk-free-rate goes to zero the time for
the global maximum goes to infinity, that is we will have no global maximum when the risk-free

Figure 1: Vega



46 THE BEST OF WILMOTT 2

Figure 2: Vega

rate is zero. Figure 2 is the same as Figure 1 but with zero interest rate. The effect of Vega being
a decreasing function of time to maturity typically kicks in only for options with very long times
to maturity—unless the interest rate is very high. It is not, however, uncommon for caps and
floors traders to use the Black-76 formula to compute Vegas for options with 10 to 15 years to
expiration (caplets).

2.2 Vega symmetry

For options with different strikes we have the following Vega symmetry

Vega(S, X, T , r, b, σ ) = X

SebT
Vega

(
S,

(SebT )2

X
, T , r, b, σ

)
.

As for the gamma symmetry, see Haug (2003), this symmetry is independent of the options being
calls or puts—at least in theory.

2.3 Vega–gamma relationship

The following is a simple and useful relationship between Vega and gamma, described by Taleb
(1997) amongst others:

Vega = �σS2T .
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2.4 Vega from delta

Given that we know the delta, what is the Vega? Vega and delta are related by a simple formula
described by Wystrup (2002):

Vega = Se(b−r)T
√

T n
[
N−1(e(r−b)T |�|)] ,

where N−1(·) is the inverted cumulative normal distribution, n() is the normal density function,
and � is the delta of a call or put option. Using the Vega–gamma relationship we can rewrite
this relationship to express gamma as a function of the delta

� = e(b−r)T n[N−1(e(r−b)T |�|)]
Sσ

√
T

.

Relationships, such as the above ones, between delta and other option sensitivities are particularly
useful in the FX options markets, where one often considers a particular delta rather than strike.

2.5 VegaP

The traditional textbook Vega gives the dollar change in option price for a percentage point change
in volatility. When comparing the Vega risk of options on different assets it makes more sense
to look at percentage changes in volatility. This metric can be constructed simply by multiplying
the standard Vega with σ

10 , which gives what is known as VegaP (percentage change in option
price for a 10% change in volatility):

VegaP = σ

10
Se(b−r)T n(d1)

√
T ≥ 0.

VegaP attains its local and global maximum at the same asset price and time as for Vega. Some
options systems use traditional textbook Vega, while others use VegaP.

When comparing Vegas for options with different maturities (calendar spreads) it makes more
sense to look at some kind of weighted Vega, or alternatively Vega bucketing,3 because short-term
implied volatilities are typically more volatile than long-term implied volatilities. Several options
systems implement some type of Vega weighting or Vega bucketing (see Haug 1993 and Taleb
1997 for more details).

2.6 Vega leverage, Vega elasticity

The percentage change in option value with respect to percentage point change in volatility is
given by

VegaLeveragecall = Vega
σ

call
≥ 0,

VegaLeverageput = Vega
σ

put
≥ 0.

The Vega elasticity is highest for out-of-the-money options. If you believe in an increase in implied
volatility you will therefore get maximum bang for your bucks by buying out-of-the-money
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Figure 3: Vega leverage

options. Several traders I have met will typically tell you to buy at-the-money options when they
want to speculate on higher implied volatility, to maximize Vega. There are several advantages
to buying out-of-the-money options in such a scenario. One is the higher Vega-leverage. Another
advantage is that you often also get a positive DvegaDvol (and also DgammaDvol), a measure
we will have a closer look at below. The drawbacks of deep-out-of-the-money options are faster
time decay (in percent of premium), and typically lower liquidity. Figure 3 illustrates the Vega
leverage of a put option.

2.7 DvegaDvol, Vomma

DvegaDvol, also known as Vega convexity, Vomma (see Webb 1999), or Volga, is the sensitivity
of Vega to changes in implied volatility. Together with DgammaDvol, see Haug (2003), Vomma
is in my view one of the most important Greeks. DvegaDvol is given by

DvegaDvol = ∂2c

∂σ 2
= ∂2p

∂σ 2
= Vega

(
d1d2

σ

)
≤≥ 0.

For practical purposes, where one ‘typically’ wants to look at Vomma for the change of one
percentage point in the volatility, one should divide Vomma by 10 000.

In case of DvegaPDvol we have

DvegaPDvol = VegaP

(
d1d2

σ

)
≤≥ 0.
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Options far out-of-the money have the highest Vomma. More precisely given the strike price,
Vomma is positive outside the interval

(SL = Xe(−b−σ 2/2)T , SU = Xe(−b+σ 2/2)T ).

Given the asset price the Vomma is positive outside the interval (relevant only before conducting
the trade)

(XL = Se(b−σ 2/2)T , XU = Se(b+σ 2/2)T ).

If you are long options you typically want to have as high positive DvegaDvol as possible. If
short options, you typically want negative DvegaDvol. Positive DvegaDvol tells you that you will
earn more for every percentage point increase in volatility, and if implied volatility is falling you
will lose less and less—that is, you have positive Vega convexity.

While DgammaDvol is most relevant for the volatility of the actual volatility of the underlying
asset, DvegaDvol is more relevant for the volatility of the implied volatility. Although the volatility
of implied volatility and the volatility of actual volatility will typically have high correlation, this
is not always the case. DgammaDvol is relevant for traditional dynamic delta hedging under
stochastic volatility. DvegaDvol trading has little to do with traditional dynamic delta hedging.
DvegaDvol trading is a bet on changes on the price (changes in implied vol) for uncertainty in:

Figure 4: DvegaDvol
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supply and demand, stochastic actual volatility (remember this is correlated to implied volatility),
jumps and any other model risk: factors that affect the option price, but that are not taken into
account in the Black–Scholes formula. A DvegaDvol trader does not necessarily need to identify
the exact reason for the implied volatility to change. If you think the implied volatility will be
volatile in the short term you should typically try to find options with high DvegaDvol. Figure 4
shows the graph of DvegaDvol for changes in asset price and time to maturity.

2.8 DvegaDtime

DvegaDtime is the change in Vega with respect to changes in time. Since we typically are looking
at decreasing time to maturity we express this as minus the partial derivative

DvegaDtime = −∂Vega

∂T
= Vega

(
r − b + bd1

σ
√

T
− 1 + d1d2

2T

)
≤≥ 0

For practical purposes, where one ‘typically’ wants to express the sensitivity for a one percentage
point change in volatility to a one day change in time, one should divide the DvegaDtime by
36 500, or 25 200 if you look at trading days only. Figure 5 illustrates DvegaDtime. Figure 6
shows DvegaDtime for a wider range of parameters and a lower implied volatility, as expected
from Figure 1 we can see here that DvegaDtime actually can be positive.

Figure 5: DvegaDtime
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Figure 6: DvegaDtime (Vanna)

3 Theta Greeks

3.1 Theta

Theta is the option’s sensitivity to a small change in time to maturity. As time to maturity
decreases, it is normal to express theta as minus the partial derivative with respect to time.

Call

�call = − ∂c

∂T
= −Se(b−r)T n(d1)σ

2
√

T
− (b − r)Se(b−r)T N(d1)

− rXe−rT N(d2) ≤≥ 0.

Put

�put = − ∂p

∂T
= −Se(b−r)T n(d1)σ

2
√

T
+ (b − r)Se(b−r)T N(−d1)

+ rXe−rT N(−d2) ≤≥ 0.
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Drift-less theta In practice it is often also of interest to know the drift-less theta, θ , which
measures time decay without taking into account the drift of the underlying or discounting. In other
words the drift-less theta isolates the effect time-decay has on uncertainty, assuming unchanged
volatility. The uncertainty or volatilities effect on the option consists of time and volatility. In
that case we have

θcall = θput = θ = −Sn(d1)σ

2
√

T
≤ 0.

3.2 Theta symmetry

In the case of drift-less theta for options with different strikes we have the following symmetry,
for both puts and calls,

θ(S, X, T , 0, 0, σ ) = X

S
θ

(
S,

S2

X
, T , 0, 0, σ

)

Theta–Vega relationship There is a simple relationship between Vega and drift-less theta

θ = −Vega × σ

2T
.

Bleed-offset volatility A more practical relationship between theta and Vega is what is known as
bleed-offset vol. It measures how much the volatility must increase to offset the theta-bleed/time
decay. Bleed-offset vol can be found simply by dividing the one-day theta by Vega, �

Vega . In the
case of positive theta you can actually have negative offset vol. Deep-in-the-money European
options can have positive theta, in this case the offset-vol will be negative.

Theta–gamma relationship There is a simple relationship between drift-less gamma and drift-
less theta

� = −2θ

S2σ 2
.

4 Rho Greeks
4.1 Rho

Rho is the option’s sensitivity to a small change in the risk-free interest rate.

Call

ρcall = ∂c

∂r
= T Xe−rT N(d2) > 0,

in the case the option is on a future or forward (that is b will always stay 0) the rho is given by

ρcall = ∂c

∂r
= −T c < 0.
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Put

ρput = ∂p

∂r
= −T Xe−rT N(−d2) < 0

in the case the option is on a future or forward (that is b will always stay 0) the rho is given by

ρput = ∂c

∂r
= −Tp < 0.

4.2 Cost-of-carry
This is the option’s sensitivity to a marginal change in the cost-of-carry rate.

Cost-of-carry call

∂c

∂b
= T Se(b−r)T N(d1) > 0.

Cost-of-carry put

∂p

∂b
= −T Se(b−r)T N(−d1) < 0.

5 Probability Greeks
In this section we will look at risk neutral probabilities in relation to the BSM formula. Keep in
mind that such risk adjusted probabilities could be very different from real world probabilities.4

5.1 In-the-money probability
In the (Black and Scholes 1973, Merton 1973) model, the risk neutral probability for a call option
finishing in-the-money is

ζc = N(d2) > 0,

and for a put option

ζp = N(−d2) > 0.

This is the risk neutral probability of ending up in-the-money at maturity. It is not identical to the
real world probability of ending up in-the-money. The real probability we simply cannot extract
from options prices alone. A related sensitivity is the strike-delta, which is the partial derivatives
of the option formula with respect to the strike price

∂c

∂X
= −e−rT N(d2) > 0,

∂p

∂X
= e−rT N(−d2) > 0.

This can be interpreted as the discounted risk neutral probability of ending up in-the-money
(assuming you take the absolute value of the call strike-delta).
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Probability mirror strikes For a put and a call to have the same risk neutral probability of
finishing in-the-money, we can find the probability symmetric strikes

Xp = S2

Xc

e(2b−σ 2)T , Xc = S2

Xp

e(2b−σ 2)T ,

where Xp is the put strike, and Xc is the call strike. This naturally reduces to N [d2(Xc)] =
N [d2(Xp)]. A special case is Xc = Xp, a probability mirror straddle (probability-neutral straddle).
We have this at

Xc = Xp = Se(b−σ 2/2)T .

At this point the risk neutral probability of ending up in-the-money is 0.5 for both the put and the
call. Standard puts and calls will not have the same value at this point. The same value for a put
and a call occurs when the options are at-the-money forward, X = SbT . However, for a cash-or-
nothing option (see Reiner and Rubinstein 1991b, Haug 1997) we will also have value-symmetry
for puts and calls at the risk neutral probability strike. Moreover, at the probability-neutral straddle
we will also have Vega symmetry as well as zero Vomma.

Strikes from probability Another interesting formula returns the strike of an option, given the
risk neutral probability pi of ending up in-the-money. The strike of a call is given by

Xc = S exp[−N−1(pi)σ
√

T + (b − σ 2/2)T ],

where N−1(x) is the inverse cumulative normal distribution. The strike for a put is given by

Xp = S exp[N−1(pi)σ
√

T + (b − σ 2/2)T ].

5.2 DzetaDvol

Zeta’s sensitivity to change in the implied volatility is given by

∂ζc

∂σ
= ∂ζp

∂σ
= −n(d2)

(
d1

σ

)
≤≥ 0

and for a put

∂ζp

∂σ
= ∂ζp

∂σ
= n(d2)

(
d1

σ

)
≤≥ 0.

Divide by 100 to get the associated measure for percentage point volatility changes.
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5.3 DzetaDtime

The in-the-money risk neutral probability’s sensitivity to moving closer to maturity is given by

−∂ζc

∂T
= n(d2)

(
b

σ
√

T
− d1

2T

)
≤≥ 0,

and for a put

−∂ζp

∂T
= −n(d2)

(
b

σ
√

T
− d1

2T

)
≤≥ 0.

Divide by 365 to get the sensitivity for a one-day move.

5.4 Risk neutral probability density

BSM second partial derivatives with respect to the strike price yield the risk neutral probability
density of the underlying asset, see Breeden and Litzenberger (1978) (this is also known as the
strike gamma)

RND = ∂2c

∂X2
= ∂2p

∂X2
= n(d2)e

−rT

Xσ
√

T
≥ 0.

Figure 7 illustrates the risk neutral probability density with respect to variable time and asset
price. With the same volatility for any asset price this is naturally the log-normal distribution of
the asset price, as evident from the graph.

Figure 7: Risk neutral density
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5.5 From in-the-money probability to density
Given the in-the-money risk-neutral probability, pi , the risk neutral probability density is given by

RND = e−rT n[N−1(pi)]

Xσ
√

T
,

where n() is the normal density function.

5.6 Probability of ever getting in-the-money
For in-the-money options the probability of ever getting in-the-money (hitting the strike) before
maturity naturally equals unity, since we are already in-the-money. The risk neutral probability
for an out-of-the-money call ever getting in-the-money is5

pc = (X/S)µ+λN(−z) + (X/S)µ−λN(−z + 2λσ
√

T ).

Similarly, the risk neutral probability for an out-of-the-money put ever getting in-the-money
(hitting the strike) before maturity is

pp = (X/S)µ+λN(z) + (X/S)µ−λN(z − 2λσ
√

T ),

where

z = ln(X/S)

σ
√

T
+ λσ

√
T , µ = b − σ 2/2

σ 2
, λ =

√
µ2 + 2r

σ 2
.

This is equal to the barrier hit probability used for computing the value of a rebate, developed
by Reiner and Rubinstein (1991a). Alternatively, the probability of ever getting in-the-money
before maturity can be calculated in a very simple way in a binomial tree, using Brownian bridge
probabilities.

End of Part 2

BSD trader Sergeant, that is all for now. You now know the basic operation of the Black–Scholes
weapon.

New trader Did I hear you right? ‘Sergeant’?
BSD trader Yes. Now that you know the basics of the Black–Scholes weapon, I have decided

to promote you.
New trader Thank you, Sir, for teaching me all your tricks.
BSD trader Here’s a three million loss limit. Time for you to start trading.
New trader Only three million?

FOOTNOTES & REFERENCES

1. While the other sensitivities have names that correspond to Greek letters Vega is the name
of a star.
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2. Described by Adamchuk on the Wilmott forum www.wilmott.com on February 6, 2002.
3. Vega bucketing simply refers to dividing the Vega risk into time buckets.
4. Risk neutral probabilities are simply real world probabilities that have been adjusted for
risk. It is therefore not necessary to adjust for risk also in the discount factor for cash flows.
This makes it valid to compute market prices as simple expectations of cash flows, with the
risk adjusted probabilities, discounted at the risk less interest rate—hence the common name
‘risk neutral’ probabilities, which is somewhat of a misnomer.
5.This analytical probability was first published by Reiner and Rubinstein (1991a) in the
context of barrier hit probability.
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5
Take a Chance
Bill Ziemba

Gambling and investment practices are not so far removed from one another.

T
here is a fine but distinct line between the public’s and the law’s distinction between
investing and legalized gambling. Stocks and bonds, bank accounts and real estate
are traditional investments. Poker, blackjack, lotteries and horseracing are popular
gambling games. Gold and silver, commodity and financial futures and stock and index
options are somewhat in between but are generally thought to be on the investment

side of the line. English spread betting is a good example where legal bets can be made without
tax liability on sports events and financial investments such as stock index futures. The higher
transaction costs are compensated by the absence of taxes. See Tables 1 and 2.

In all of these situations, one is making decisions whose resulting outcome has some degree
of uncertainty. The outcome may also depend upon the actions of others. For example, consider
buying shares of Qualcom. The stock is one of the few high flying, US, internet, high tech stocks
that did not completely crash in 2000. The stock was around 100 in December versus a high of 200
in January 2000. The company has signed deals with the Chinese government and others for their
pioneering wireless technology. Despite its 90 plus price earnings ratio, its future prospects looked
excellent. While its niche in digital wireless communication is fairly unique and future demand
growth looks outstanding, others could possibly market successful and cheaper alternatives or the
marketing deals could unravel. What looks good now has frequently turned into disaster in the
late 1990’s technology market place since enormous growth is needed in the future to justify
today’s high prices. Qualcom has continued to grow but at a slower rate and its stock price fell
to a third of its December 2000 value in mid-2002. Such is a typical price experience of high
PE stocks.

Economic effects that manifest themselves into general market trends are important also in
a stock’s price. Most stocks are going up in a rising market and vice versa. Indeed in the
most popular stock market pricing theory—the so-called capital asset market equilibrium beta
model—securities are compared via their relative price movement up or down and at what rate
when the general market average (e.g. S&P500 index) rises or falls. Over time, stocks have greatly
outperformed bonds, T-bills, inflation and gold. For example, $1 invested in 1802 in gold was only
worth $11 in 1997, CPI inflation was $13, T-bills $3679, bonds $10,744 and stocks a whopping
$7.47 million. And the gains are pretty steady over time; see Table 3.

So for success in stocks, one has two crucial elements: general uncertainty about the economy
and the product’s acceptance and the effect of competition.
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TABLE 1: ESSENTIALS OF INVESTMENT AND GAMBLING

Investing Leveraged investing Gambling

Bank accounts and term
deposits

Gold and silver
Mutual funds
Real estate
Stocks and bonds

• Positive sum game usually

• SLOW—‘buy and hold’

• To preserve your capital

• Gains usually exceed
transaction costs for the
average person

• Path dependence is not
extremely crucial

Commodity and
financial futures

Options
Spread betting
Hedge funds

• ZERO SUM game

• Many winners and
many losers

• Low transactions
costs

• Risk control is
important

• Path dependence is
crucial

Blackjack
Dice games
Horseracing
Jai Alai
Lotteries
Roulette
Sports betting
• Negative sum game, average

person LOSES

• FAST play

• Entertainment

• High transactions costs

• Winners share net pool: house
cannot lose if payoffs are pari-
mutuel, percent of play

• Edge on each play: each play
is either won or lost; house
cannot lose except in fixed
odds cases where they do not
diversify

TABLE 2: ASPECTS OF SEVERAL GAMBLING/INVESTMENT SITUATIONS WITH
WINNING SYSTEMS

Average Probability Wagers Does the wager
edge of winning affect the odds?

Blackjack 1.5% 45–55% Large No
Financial futures 10%+ 2–98% Extremely large Yes
Horseracing 10%+ 2–98% Medium to large Yes
Lotteries 25%+ Less than 1% Very small Yes

An analogous situation is found in a gambling context such as sports betting on the super
bowl. The general uncertainty affects the outcome of the game whereas the competition from
other players shows up in higher or lower odds.

What then is the difference between investing and gambling? In investing one buys some item
be it a stock, a bar of platinum or a waterfront house, pays the commission to the seller, and goes
off possibly for a long time. Nothing prevents all participants from gaining. In fact they usually
do. The essence of an investment is this: it is possible for every person buying the item to gain
and it is generally expected that most people will in fact reap profits.
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TABLE 3: AVERAGE
CONTINUOUSLY
COMPOUNDED YEARLY
RATES OF RETURN,
1802–1997

Average edge

Gold 1.2%
CPI 1.3%+
Bills 4.1%+
Bonds 4.6%
Stocks 7.9%

More interesting and profitable is the construction of hedges involving combinations of long
and short risky situations where one makes a moderate profit most of the time with little risk.
This is the basis of some successful hedge fund and bank trading department strategies.

The situation is different with a gambling game. There is usually a house or some type of
negative or zero sum game, be it a casino, racetrack management or provincial lottery that takes a
predetermined (minimum or average) commission. On the surface, it seems that the house cannot
lose except in rare instances and certainly not in the aggregate. Surprisingly, lottery organizations
around the world make many conceptual mistakes in game design that lead to situations in which
winning player strategies exist. How about the players? On average, they must lose since the
house always makes its commission. So all players cannot win. Some may win but many or most
will lose. In fact estimates show that very few persons (about one in a hundred) actually make
profits in gambling over extended periods of time. Most people talk about their wins and are much
more quiet about their losses. As my colleague Mr B says, they want ‘bragging rights’. For most
people, gambling is a form of entertainment and although they would like to win, their losses
seem to be adequately compensated by the enjoyment of the play. The game also does not take
very long. When it is played, the management takes its commission and distributes the prizes or
winnings in a quick and orderly fashion. Then the game is repeated.

A gambling situation can be of two types. In fixed payment games the players wager against
the house. In any particular play, the house and the player either win or lose. What one wins the
other loses so both parties have risk. However, by having an edge and by diversifying over many
players, the house remains profitable. But the players cannot do this. In pari-mutuel games, the
house is passive and takes a fixed piece of the action. The rest is then split among the winners.
In this way the house cannot lose and takes no risk.

In these games, the players are really wagering against each other. In both types of gambling
the average player loses. Some players may win, but the players as a group have a net loss.
The vigorish (transactions costs) is essentially the payment for the pleasure of playing. It is an
important result in the mathematics of gambling that, faced with a sequence of unfavorable games,
no gambling system can be devised that will yield a profit on average after one, two, three or any
number of plays. You simple cannot change an unfavorable (negative expected value) game into
a favorable game with a clever mathematical betting scheme.
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The colocation of money
and math
Be especially wary of advice of the doubling up strategies: martingales, pyramids, etc. While such
systems may allow you to make small profits most of the time, the gigantic losses you suffer once
in a while yield losses in the long run.

The most useful result that we have for unfavorable games is that if you want to maximize
your chances of achieving a goal before falling to some lower wealth level, you should use ‘bold
play’. With bold play you do not let the casino defeat you by grinding out small profits from you
along the way. Rather, you bet amounts that get you to your goal as soon as possible.

Consider roulette, which is an unfavorable game with an edge of minus 2/38 or minus 5.26.
Assuming that you are not able to predict the numbers that will occur any better than random,
you should bet on only one number with a wager that if you win you will either reach your goal
or a wealth level from which you can reach it on one or more subsequent plays. If your fortune
is $10 and your goal is $1000, then it is optimal to bet the entire $10 on only one number. If
you lose you are out. If you win you have $360 (with the 35-1 payoff) and then you bet $19,
which takes you to $1006 if you win and $341 if you lose. Upon losing you would bet the
smallest amount—$19 again—so that if you win you reach your goal of $1000, etc. This bold
play strategy always gives you the highest chance of achieving your goal.

On the other hand, when you—the casino in the case of roulette—have the edge and your goal
is to reach some higher level of wealth before falling to a lower level with as high a probability
as possible, then ‘timid play’ is optimal. With timid play, you wager small amounts to make sure
some small sample random result does not hurt you. Then, after a moderate number of plays you
are virtually sure of winning. This is precisely what casinos do. With even a small edge, all they
need to do to be practically guaranteed of large and steady profits is to diversify the wagers so
that the percentage wagered by each gambler is small. With crowded casinos, this is usually easy
to accomplish. A simple example of this idea, non-diversification, shows up in many if not most
or all financial disasters.

Changing a gamble into
an investment
The point of all this is that if you are to have any chance at all of winning, you must develop a
playing strategy so that at least some of the time, and preferably most or all of the time, you are
betting when you are getting on average more than a dollar for each dollar wagered. We call this
changing a gamble into an investment. This is possible in roulette, see Tom Bass’ The Eudomonic
Pie. Also, for the simpler game of the wheel of fortune, see Ed Thorp’s article in the March 1982
issue of Gambling Times.

In this chapter and Chapter 6, I discuss topics in the mathematics of gambling and investment.
The basic goal is to turn gambles into investments with the development of good playing strate-
gies and then to wager intelligently. The strategy development follows general principles but is
somewhat different for each particular situation. The wagering or money management concepts
apply to all games. The difference in application depends upon the edge and the probability of
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winning. The size of the wager depends on the edge but much more so on the probability of
winning if one takes a long run rate of growth of profit approach, as I discuss in Chapter 6. We
will look at situations where the player has an edge and develop playing strategies to exploit
that edge. These are situations where, on average, the player can win using a workable system.
The analyses utilize concepts from modern financial economics investment theory and related
mathematical optimization, psychological, statistical and computer techniques and apply them to
the gambling situations to yield profitable systems. This frequently involves the identification of
a security market imperfection, anomaly or partially predictable prices. Naturally in gambling
situations all players cannot win so the potential gain will depend upon how good the system is,
how well it is played and how many are using it or other profitable systems—also, most crucially,
on the risk control system in use. Nor will every game have a useful favorable system where one
can make profits on average. Baccarat or Chemin de Fer is one such example. However, virtually
every financial market will have strategies that lead to winning investment situations.

There are two aspects of the analysis of each situation: when should one bet and how much
should be bet? These may be referred to as strategy development and money management. They
are equally important. While the strategy development aspect is fairly well understood by many,
the money management (risk control) element is more subtle and it is errors here that lead to
financial disasters. In the next chapter we will discuss the basic theory of gambling/investing over
time using the capital growth/Kelly and fractional Kelly betting systems and apply this to futures
trading. Chapters 6 and 7 discuss hedge funds and focus on strategy development and risk control
failures such as Long Term Capital Management in 1998 and models of lottery, horserace and other
betting situations, pension, insurance company and individual investment planning over time.

I have been fortunate to have worked and consulted with four individuals who have used these
ideas in four separate areas: ‘market neutral’ hedge funds, private futures trading hedge funds,
mispriced options and racetrack betting to turn essentially zero into more than $300 million.
All four, while different in many ways, began with a gambling focus and retain this in their
trading. They are true investors with heavy emphasis on computerized mathematical investing
and risk control. They understand downside risk well. They are even more focused on not losing
their capital than on having more winnings. They have their losses but rarely do they overbet or
non-diversify enough to have a major blowout like the hedge fund occurrences.





6
Good and Bad Properties
of the Kelly Criterion
Bill Ziemba

If your outlook is well extended, the Kelly criterion is the approach best suited to
generating a fortune.

I
n this chapter I would like to discuss good and bad properties of the Kelly expected log
capital growth criterion and in the process lead into the next chapter on hedge funds by
discussing two of the great traders who ran unofficial hedge funds. The main advantages
are that if your horizon is long enough then the Kelly criterion is the road, however bumpy,
to the most wealth at the end and the fastest path to a given rather large fortune.

Thorp (1997) has shown that the great investor Warren Buffett’s Berkshire Hathaway actually
has had a growth path quite similar to full Kelly betting. Figure 1 shows this performance from
1985 to 2000 in comparison with other great funds. Buffett also had a great record from 1977 to
1985 turning 100 into 1429.87, and 65,852.40 in April 2000.

Keynes was another Kelly-type bettor. His record running King’s College Cambridge’s Chest
Fund is shown in Figure 2 versus the British market index for 1927 to 1945, data from Chua
and Woodward (1983). Notice how much Keynes lost the first few years; obviously his academic
brilliance and the recognition that he was facing a rather tough market kept him in this job. In
total his geometric mean return beat the index by 10.01%. Keynes was an aggressive investor
with a beta of 1.78 versus the benchmark United Kingdom market return, a Sharpe ratio of
0.385, geometric mean returns of 9.12% per year versus −0.89% for the benchmark. Keynes
had a yearly standard deviation of 29.28% versus 12.55% for the benchmark. These returns
do not include Keynes’ (or the benchmark’s) dividends and interest, which he used to pay the
college expenses. These were 3% per year. Kelly cowboys have their great returns and losses and
embarrassments. Not covering a grain contract in time led to Keynes taking delivery and filling
up the famous chapel. Fortunately it was big enough to fit in the grain and store it safely until it
could be sold.

Keynes emphasized three principles of successful investments in his 1933 report:

1. A careful selection of a few investments (or a few types of investment) having regard
to their cheapness in relation to their probable actual and potential intrinsic value over a
period of years ahead and in relation to alternative investments at the time;
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Mr Keynes believed God to be a large chicken, the Reverend surmised

2. A steadfast holding of these in fairly large units through thick and thin, perhaps for several
years until either they have fulfilled their promise or it is evident that they were purchased
on a mistake; and

3. A balanced investment position, i.e. a variety of risks in spite of individual holdings being
large, and if possible, opposed risks.

He really was a lot like Buffett with an emphasis on value, large holdings and patience.
In November 1919 Keynes was appointed second bursar. Up to this time King’s College

investments were only in fixed income trustee securities plus their own land and buildings. By
June 1920 Keynes convinced the college to start a separate fund containing stocks, currency
and commodity futures. Keynes became first bursar in 1924 and held this post which had final
authority on investment decisions until his death in 1945.

And Keynes did not believe in market timing as he said:

We have not proved able to take much advantage of a general systematic movement
out of and into ordinary shares as a whole at different phases of the trade cycle. As a
result of these experiences I am clear that the idea of wholesale shifts is for various
reasons impracticable and indeed undesirable. Most of those who attempt to, sell too
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Figure 1: Growth of assets, log scale, various high performing funds, 1985–2000. Source: Ziemba
(2003)
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Figure 2: Graph of the performance of the Chest Fund, 1927–1945. Source: Ziemba (2003)
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late and buy too late, and do both too often, incurring heavy expenses and developing
too unsettled and speculative a state of mind, which, if it is widespread, has besides
the grave social disadvantage of aggravating the scale of the fluctuations.

The main disadvantages result because the Kelly strategy is very very aggressive with huge
bets that are larger and larger as the situations are most attractive: recall that the bet is mean
return divided by the odds of winning. As I repeatedly argue it’s the mean that counts by far
the most. There is about a 20–2:1 ratio of expected utility loss from similarly sized errors
of means, variances and covariances, respectively. See Table 1 and Figure 3; see Kallberg and
Ziemba (1984) and Chopra and Ziemba (1993) for details. Returning to Buffett who gets the mean
right, better than almost all, notice that the other funds he outperformed are not shabby ones at all.

TABLE 1: AVERAGE RATIO OF CERTAINTY EQUIVALENT
LOSS FOR ERRORS IN MEANS, VARIANCES AND
COVARIANCES

t Errors in means Errors in means Errors in variances
Risk tolerance vs covariances vs variances vs covariances

25 5.38 3.22 1.67
50 22.50 10.98 2.05
75 56.84 21.42 2.68

↓ ↓ ↓
20 10 2
Error Mean Error Var Error Covar
20 2 1

Source: Chopra and Ziemba (1993)
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errors in inputs. Source: Chopra and Ziemba (1993)
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TABLE 2: KELLY CRITERION PROPERTIES

Good Maximizing E[log X] asymptotically maximizes the rate of asset growth. See Breiman
(1961), Algoet and Cover (1988).

Good The expected time to reach a pre-assigned goal is asymptotical as X increases least with a
strategy maximizing E[log XN ]. See Breiman (1961), Algoet and Cover (1988), Browne
(1997).

Good Maximizing median log X. See Ethier (1987).
Bad False property: If maximizing E[log XN ] almost certainly leads to a better outcome then the

expected utility of its outcome exceeds that of any other rule provided N is sufficiently large.
Counter example: u(x) = x, 1/2 < p < 1, Bernoulli trials f = 1 maximizes E[U(x)] but
f = 2p − 1 < 1 maximizes E[log XN ]. See Samuelson (1971), Thorp (1975).

Good The E[log X] bettor never risks ruin. See Hakansson and Miller (1975).
Bad If the E[log XN ] bettor wins then loses or loses then wins, he is behind. The order of win

and loss is immaterial for one, two, . . ., sets of trials. (1 + γ )(1 − γ )X0 = (1 − γ 2)X0 ≤ X0.
Good The absolute amount bet is monotone in wealth. (δE[log X])/δW0 > 0.
Bad The bets are extremely large when the wager is favorable and the risk is very low. For

single investment worlds, the optimal wager is proportional to the edge divided by the odds.
Hence for low risk situations and corresponding low odds, the wager can be extremely large.
For one such example, see Ziemba and Hausch (1986; 159–160). There, in the inaugural 1984
Breeders’ Cup Classic $3 million race, the optimal fractional wager on the 3–5 shot Slew of
Gold was 64%. Thorp and I actually made this place and show bet and won with a low
fractional Kelly wager. Slew actually finished third but the second place horse Gate Dancer
was disqualified and placed third. Luck (a good scenario) is also nice to have in betting
markets. Wild Again won this race; the first great victory by the masterful jockey Pat Day.

Bad One overinvests when the problem data is uncertain. Investing more than the optimal capital
growth wager is dominated in a growth-security sense. Hence, if the problem data provides
probabilities, edges and odds that may be in error, then the suggested wager will be too large.

Bad The total amount wagered swamps the winnings—that is, there is much churning. Ethier
and Tavaré (1983) and Griffin (1985) show that the Expected Gain/E Bet is arbitrarily small
and converges to zero in a Bernoulli game where one wins the expected fraction p of games.

Bad The unweighted average rate of return converges to half the arithmetic rate of return.
Related to property 5 this indicates that you do not seem to win as much as you expect.
See Ethier and Tavaré (1983) and Griffin (1985).

Bad Betting double the optimal Kelly bet reduces the growth rate of wealth to zero plus the
risk-free rate. See Janacek (1998) and Ziemba (1993) for proofs.

Good The E[log X] bettor is never behind any other bettor on average in 1, 2, . . . trials.
See Finkelstein and Whitley (1981).

Good The E[log X] bettor has an optimal myopic policy. He does not have to consider prior to
subsequent investment opportunities. This is a crucially important result for practical
use. Hakansson (1971) proved that the myopic policy obtains for dependent investments with
the log utility function. For independent investments and power utility a myopic policy is
optimal, see Mossin (1968).

Good The chance that an E[log X] wagerer will be ahead of any other wagerer after the first
play is at least 50%. See Bell and Cover (1980).

(continued overleaf )
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TABLE 2: (continued )

Good Simulation studies show that the E[log]X bettor’s fortune pulls way ahead of other
strategies, wealth for reasonable-sized samples. The key again is risk. See Ziemba and
Hausch (1986). General formulas are in Aucamp (1993).

Good If you wish to have higher security by trading it off for lower growth, then use a
negative power utility function or fractional Kelly strategy. See MacLean et al. (2005).
MacLean et al. (2004) show how to compute the coefficient to stay above a growth path with
given probability.

Bad Despite its superior long-run growth properties, it is possible to have very poor return
outcome. For example, making 700 wagers all of which have a 14% advantage, the least of
which had a 19% chance of winning, can turn $1000 into $18. But $1000 turns into
$100 000 plus 16.6% of the time, see Ziemba and Hausch (1996).

Bad It can take a long time for a Kelly bettor to dominate an essentially different strategy. In
fact this time may be without limit. Suppose µA = 20%, µB = 10%, σA = σB = 10%. Then
in five years A is ahead of B with 95% confidence. But if σA = 20%, σB = 10% with the
same means, it takes 157 years for A to beat B with 95% confidence. In coin tossing suppose
game A has an edge of 1.0% and game B 1.1%. It takes two million trials to have an 84%
chance that game A dominates game B, see Thorp (1997).
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Indeed they are George Soros’ Quantum, John Neff’s Windsor, Julian Robertson’s Tiger and
the Ford Foundation, all of whom had great records as measured by the Sharpe ratio. Buffett
made 32.07% per year net from July 1977 to March 2000 versus 16.71% for the S&P500. Wow!
Those of us who like wealth prefer Warren’s path but his higher standard deviation path (mostly
winnings) leads to a lower Sharpe (normal distribution based) measure; see Clifford et al. (2001).
See Ziemba (2005) for a modification of the Sharpe ratio only considering losses. This new
measure Sharpe improved only Buffett in this group but still Ford is preferred because Buffett
has large losses as well as large gains.

Kelly has essentially zero risk aversion since its Arrow–Pratt risk aversion index is u′′(w)/

u′(w) = 1/w, which is essentially zero. Hence it never pays to bet more than the Kelly strategy
because then risk increases (lower security) and growth decreases so is stochastically dominated.
As you bet more and more above the Kelly bet, its properties become worse and worse. When
you bet exactly twice the Kelly bet, then the growth rate is zero plus the risk free rate.

If you bet more than double the Kelly criterion, then you will have a negative growth rate.
With derivative positions one’s bet changes continuously so a set of positions amounting to a
small bet can turn into a large bet very quickly with market moves. Long Term Capital is a prime
example of this overbetting leading to disaster but the phenomenon occurs all the time all over
the world. Overbetting plus a bad scenario leads invariably to disaster.

Thus you must either bet Kelly or less. We call less than Kelly ‘fractional Kelly’, which is
simply a blend of Kelly and cash. Consider the negative power utility function δωδ for δ<0. This
utility function is concave and when δ → 0 it converges to log utility. As δ gets larger negatively,
the investor is less aggressive since his Arrow–Pratt risk aversion is also higher. For a given δ an
α = 1/(1 − δ) between 0 and 1, will provide the same portfolio when α is invested in the Kelly
portfolio and 1 − α is invested in cash.

This result is correct for log-normal investments and approximately correct for other distributed
assets; see MacLean, Ziemba and Li (2005). For example, half Kelly is δ = −1 and quarter Kelly
is δ = −3. So if you want a less aggressive path than Kelly, then pick an appropriate δ. MacLean
et al.(2004) discuss a way to pick δ continuously in time so that wealth will stay above a desired
wealth growth path with high given probability.

I have listed these and other important Kelly criterion properties in Table 2 which was updated
from MacLean, Ziemba and Blazenko (1992) and MacLean and Ziemba (1999).
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7
Algorithms:
Mathematics of
Gambling and
Investment. The
Stochastic Programming
Approach to Managing
Hedge and Pension Fund
Risk, Disasters and their
Prevention
Bill Ziemba

H
edge fund and pension fund disasters occur with different speeds. With a hedge
fund, it is usually immediate in one or two days or over a month or so. That is
because their positions are usually highly levered. The action is quick and furious
when things go wrong. A pension fund on the other hand does not make decisions
on an hourly, daily, or weekly basis like a hedge fund. Rather, their decisions are

how to allocate their funds into broad investment classes over longer periods of time. Decision
review periods are typically yearly or possibly quarterly after meetings with their fund managers.
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There have been many hedge fund disasters such as Long Term Capital Management and
Niederhoffer (1997); see Ziemba (2003). They almost invariably have three ingredients: the fund
is overbet, that is, too highly levered; the positions are not really diversified; and then a bad
scenario occurs. Once the trouble starts, it is hard to get out of it without excess cash. So it is
better to have the cash in advance, that is, to be less levered in the first place.

Pension funds have had their share of disasters as well. And the sums are much greater. The
University of Toronto announced that their pension fund lost some $450 million in 2002. The
British universities pension system was in a shortfall of about 18% (5 billion pounds) in early
2005. Worldwide pensions had a shortfall of $2.5 trillion in January 2003, according to Watson
Wyatt.

Pension funds of the defined benefit variety, which owe a fixed stream of money, are the source
of the trouble. Many governments such as those in France, Italy, Israel and many US states have
such problems. On the other hand, defined contribution plans like that of my university where
you put the money in, get contributions from the university, manage the assets and have what
you have experience far less trouble. Losses and gains are the property of the retirees not the plan
sponsor. So these have no macro problem, though for individuals their retirement prospects can
be bleak if the funds have not been well managed.

The key issue for pension funds is their strategic asset allocation to stocks, bonds, cash, real
estate and possibly other assets.

Stochastic programming models provide a good way to deal with the risk control of both
pension and hedge fund portfolios using an overall approach to position size taking into account
various possible scenarios that may be beyond the range of previous historical data. Since cor-
relations are scenario dependent, this approach is useful to model the overall position size. The
model will not allow the hedge fund to maintain positions so large and so underdiversified that a
major disaster can occur. Also the model will force consideration of how the fund will attempt to
deal with the bad scenario because once there is a derivative disaster, it is very difficult to resolve
the problem. More cash is immediately needed and there are liquidity and other considerations.
For pension funds, the problem is a shortfall to its retirees and the political fallout from that.

Let’s first discuss fixed mix versus strategic asset allocation.

1 Fixed mix and strategic asset allocation
Fixed mix strategies, in which the asset allocation weights are fixed and at each decision point the
assets are rebalanced to the initial weights, are very common and yield good results. An attractive
feature is an effective form of volatility pumping since they rebalance by selling assets high and
buying them low. Fixed mix strategies compare well with buy and hold strategies: see for example
Figure 1 which shows the 1982 to 1994 performance of a number of asset categories including
mixtures of EAFE (Europe, Australia and the Far East) index, S&P500, bonds, the Russell 2000
small cap index and cash.

Theoretical properties of fixed mix strategies are discussed by Dempster et al. (2003) and
Merton (1990) who show their advantages. In stationary markets where the return distributions
are the same each year, the long run growth of wealth is exponential with probability one. The
stationary assumption is fine for long run behavior but for short time horizons, even up to 10 to
30 years, using scenarios to represent the future will generally give better results.

Hensel et al. (1991) showed the value of strategic asset allocation. They evaluated the results of
seven representative Frank Russell US clients who were having their assets managed by approved
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Figure 1: Historical performance of some asset categories, 1/1/1982 to 12/31/1994. Source: Ziemba
and Mulvey (1998)

professional managers who are supposed to beat their benchmarks with lower risk. The study
was over 16 quarters from January 1985 to December 1988. A fixed mix naive benchmark was:
US equity (50%), non-US equity (5%), US fixed (30%), real estate (5%), cash (10%). Table 1
shows the results concerning the mean quarterly returns and the variation explained. Most of
the volatility (94.35% of the total) is explained by the naive policy allocation. This is similar
to the 93.6% in Brinson et al. (1986). T-bill returns (1.62%) and the fixed mix strategy (2.13%)
explain most of the mean returns. The managers returned 3.86% versus 3.75% for T-bills plus
fixed mix so they added value. This added value was from their superior strategic asset allocation
into stocks, bonds and cash. The managers were unable to market time or to pick securities better
than the fixed mix strategy.

Further evidence that strategic asset allocation accounts for most of the time series variation
in portfolio returns while market timing and asset selection are far less important has been given
by Blake et al. (1999). They used a nine-year (1986–1994) monthly data set on 306 UK pension
funds having eight asset classes. They find also a slow mean reversion in the funds’ portfolio
weights toward a common, time varying strategic asset allocation.

The UK pension industry is concentrated in very few management companies. Indeed four
companies control 80% of the market. This differs from the US where the largest company in
1992 had a 3.7% share according to Lakonishok et al. (1992). During the 1980s, the pensions
were about 50% overfunded. Fees are related to performance usually relative to a benchmark or
peer group. They concluded that:
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TABLE 1: AVERAGE RETURN AND RETURN VARIATION EXPLAINED
(QUARTERLY BY THE SEVEN CLIENTS), PERCENT

Average Additional variation explained
Decision level contribution, % by this level (volatility), %

Minimum risk (T-bills) 1.62 2.66
Naive allocation (fixed mix) 2.13 94.35
Specific policy allocation 0.49 0.50
Market timing (0.10) 0.14
Security selection (0.23) 0.40
Interaction and activity (0.005) 1.95
Total 3.86 100.00
T-bills and fixed mix 3.75

Source: Hensel et al. (1991)

1. UK pension fund managers have a weak incentive to add value and face constraints on
how they try to do it. Though strategic asset allocation may be set by the trustees these
are flexible and have wide tolerance for short-run deviations and can be renegotiated.

2. Fund managers know that relative rather than absolute performance determines their long-
term survival in the industry.

3. Fund managers earn fees related to the value of assets under management not to their
relative performance against a benchmark or their peers with no specific penalty for
underperforming nor reward for outperforming.

4. The concentration in the industry leads to portfolios being dominated by a small number of
similar house positions for asset allocation to reduce the risk of relative underperformance.

The asset classes from WM Company data were UK equities, international equities, UK bonds,
international bonds, cash, UK property and international property. UK portfolios are heavily equity
weighted. For example, the 1994 weights for these eight asset classes over the 306 pension funds
were 53.6, 22.5, 5.3, 2.8, 3.6, 4.2, 7.6 and 0.4%, respectively. In contrast, US pension funds had
44.8, 8.3, 34.2, 2.0, 0.0, 7.5, 3.2 and 0.0%, respectively.

Most of the 306 funds had very similar returns year by year. The semi-interquartile range was
11.47 to 12.59% and the 5th and 95th percentiles were less than 3% apart.

The returns on different asset classes were not very great except for international property.
The eight classes averaged value weighted 12.97, 11.23, 10.76, 10.03, 8.12, 9.01, 9.52 and −8.13
(for the international property) and overall 11.73% per year. Bonds and cash kept up with equities
quite well in this period. They found, similar to the previous studies, that for UK equities, a very
high percent (91.13) of the variance in differential returns across funds because of strategic asset
allocation. For the other asset classes, this is lower: 60.31% (international equities), 39.82% (UK
bonds), 16.10% (international bonds), 40.06% (UK index bonds), 15.18% (cash), 76.31% (UK
property) and 50.91% (international property). For these other asset classes, variations in net cash
flow differentials and covariance relationships explain the rest of the variation.
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2 Stochastic programming models applied
to hedge and pension fund problems
Let’s now discuss how stochastic programming models may be applied to hedge fund pension
fund problems as well as the asset-liability commitments for other institutions such as insurance
companies, banks, pension funds and savings and loans and individuals. These problems evolve
over time as follows:

A. Institutions

Receive Policy Premiums

Time

Pay off claims and investment requirement

B. Individuals

Income Streams

Time

RetirementCollege

The stochastic programming approach considers the following aspects:

• Multiple discrete time periods; possible use of end effects–steady state after decision
horizon adds one more decision period to the model; the tradeoff is an end effects period
or a larger model with one less period.

• Consistency with economic and financial theory for interest rates, bond prices etc.

• Discrete scenarios for random elements–returns, liabilities, currencies; these are the pos-
sible evolutions of the future; since they are discrete, they do not need to be lognormal
and/or any other parametric form.

• Scenario dependent correlation matrices so that correlations change for extreme scenarios.

• Utilize various forecasting models that handle fat tails and other parts of the return
distributions.

• Include institutional, legal and policy constraints.

• Model derivatives, illiquid assets and transactions costs.

• Expressions of risk in terms understandable to decision makers based on targets to be
achieved and convex penalties for their non-attainment.

• This yields simple, easy to understand, risk averse utility functions that maximize long
run expected profits net of expected discounted penalty costs for shortfalls; that pay more
and more penalty for shortfalls as they increase (highly preferable to VaR).

• Model various goals as constraints or penalty costs in the objective.

• Maintain adequate reserves and cash levels and meet regularity requirements.

• We can now solve very realistic multiperiod problems on modern work-stations and PCs
using large-scale linear programming and stochastic programming algorithms.
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• The model makes you diversify—the key for keeping out of trouble.

I would like to focus on a model I designed for the Siemens’ Austrian pension fund which
was implemented in 2000. Alois Geyer of the University of Vienna built the model with me. The
model is described in Geyer et al. (2003).

3 InnoALM, The Innovest Austrian Pension
Fund Financial Planning Model
Siemens AG Österreich, part of the global Siemens Corporation, is the largest privately owned
industrial company in Austria. Its businesses with revenues of ¤2.4 billion in 1999, include
information and communication networks, information and communication products, business
services, energy and traveling technology, and medical equipment. Their pension fund, established
in 1998, is the largest corporate pension plan in Austria and is a defined contribution plan. Over
15 000 employees and 5000 pensioners are members of the pension plan with ¤510 million in
assets under management as of December 1999.

Innovest Finanzdienstleistungs AG founded in 1998 is the investment manager for Siemens
AG Österreich, the Siemens Pension Plan and other institutional investors in Austria. With ¤2.2
billion in assets under management, Innovest focuses on asset management for institutional
money and pension funds. This pension plan was rated the best in Austria of 17 analyzed in
the 1999/2000 period. The motivation to build InnoALM, which is described in Geyer et al.
(2003), is part of their desire to have superior performance and good decision aids to help achieve
this.

Various uncertain aspects, possible future economic scenarios, stock, bond and other invest-
ments, transactions costs, liquidity, currency aspects, liability commitments over time, Austrian
pension fund law and company policy suggested that a good way to approach this was via a multi-
period stochastic linear programming model. These models evolve from Kusy and Ziemba (1986),
Cariño and Ziemba et al. (1994, 1998a, b), Ziemba and Mulvey (1998) and Ziemba (2003). This
model has innovative features such as state dependent correlation matrices, fat tailed asset return
distributions, simple computational schemes and output.

InnoALM was produced in six months during 2000 with Geyer and Ziemba serving as con-
sultants and Herold and Kontriner being Innovest employees. InnoALM demonstrates that a small
team of researchers with a limited budget can quickly produce a valuable modeling system that
can easily be operated by non-stochastic programming specialists on a single PC. The IBM OSL
stochastic programming software provides a good solver. The solver was interfaced with user
friendly input and output capabilities. Calculation times on the PC are such that different model-
ing situations can be easily developed and the implications of policy, scenario, and other changes
seen quickly. The graphical output provides pension fund management with essential information
to aid in the making of informed investment decisions and understand the probable outcomes and
risk involved with these actions. The model can be used to explore possible European, Austrian
and Innovest policy alternatives.

The liability side of the Siemens Pension Plan consists of employees, for whom Siemens is
contributing DCP payments, and retired employees who receive pension payments. Contributions
are based on a fixed fraction of salaries, which varies across employees. Active employees are
assumed to be in steady state; so employees are replaced by a new employee with the same
qualification and sex so there is a constant number of similar employees. Newly employed staff
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start with less salary than retired staff, which implies that total contributions grow less rapidly
than individual salaries. The set of retired employees is modeled using Austrian mortality and
marital tables. Widows receive 60% of the pension payments. Retired employees receive pension
payments after reaching age 65 for men and 60 for women. Payments to retired employees are
based upon the individually accumulated contribution and the fund performance during active
employment. The annual pension payments are based on a discount rate of 6% and the remaining
life expectancy at the time of retirement. These annuities grow by 1.5% annually to compensate
for inflation. Hence, the wealth of the pension fund must grow by 7.5% per year to match
liability commitments. Another output of the computations is the expected annual net cash flow
of plan contributions minus payments. Since the number of pensioners is rising faster than plan
contributions, these cash flows are negative so the plan is declining in size.

Front-end user interface (Excel)
Periods (targets, node structure, fixed cash-flows, ... )
Assets (selection, distribution, initial values, transaction costs, ... )
Liability data
Statistics (mean, standard deviation, correlation)
Bounds
Weights
Historical data
Options (plot, print, save, ... )
Controls (breakpoints of cost function, random seed, ... )

GAUSS
read input
compute statistics
simulate returns and generate scenarios
generate SMPS files (core, stoch and time)

IBMOSL solver

read SMPS input files
solve the problem
generate output file (optimal solutions for all nodes and variables)

Output interface (GAUSS)
read optimal solutions
generate tables and graphs
retain key variables in memory to allow for further analyses

Figure 2: Elements of InnoALM. Source: Geyer et al. (2003)

The model determines the optimal purchases and sales for each of N assets in each of T

planning periods. Typical asset classes used at Innovest are US, Pacific, European, and Emerging
Market equities and US, UK, Japanese and European bonds. The objective is to maximize the
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concave risk averse utility function expected terminal wealth less convex penalty costs subject to
various linear constraints. The effect of such constraints is evaluated in the examples that follow,
including Austria’s limits of 40% maximum in equities, 45% maximum in foreign securities, and
40% minimum in Eurobonds. The convex risk measure is approximated by a piecewise linear
function so the model is a multiperiod stochastic linear program. Typical targets that the model
tries to achieve, and if not is penalized for, are wealth (the fund’s assets) to grow by 7.5% per
year and for portfolio performance returns to exceed benchmarks. Excess wealth is placed into
surplus reserves and a portion of that is paid out in succeeding years.

The elements of InnoALM are described in Figure 2. The interface to read in data and problem
elements uses Excel. Statistical calculations use the program Gauss and this data is fed into the
IBM0SL solver which generates the optimal solution to the stochastic program. The output used
Gauss to generate various tables and graphs and retains key variables in memory to allow for
future modeling calculations. Details of the model formulation are in Geyer et al. (2003).

3.1 Some typical applications

To illustrate the model’s use we present results for a problem with four asset classes (Stocks
Europe, Stocks US, Bonds Europe, and Bonds US) with five periods (six stages). The periods
are twice 1 year, twice 2 years and 4 years (10 years in total). We assume discrete compounding
which implies that the mean return for asset i (µi) used in simulations is µi = exp(y)i − 1 where
yi is the mean based on log returns. We generate 10 000 scenarios using a 100-5-5-2-2 node
structure. Initial wealth equals 100 units and the wealth target is assumed to grow at an annual
rate of 7.5%. No benchmark target and no cash in- and outflows are considered in this sample
application to make its results more general. We use risk aversion RA = 4 and the discount factor
equals 5%, which corresponds roughly with a simple static mean-variance model to a standard
60-40 stock-bond pension fund mix; see Kallberg and Ziemba (1983).

Assumptions about the statistical properties of returns measured in nominal Euros are based on
a sample of monthly data from January 1970 for stocks and 1986 for bonds to September 2000.
Summary statistics for monthly and annual log returns are in Table 2. The US and European
equity means for the longer period 1970–2000 are much lower than for 1986–2000 and slightly
less volatile. The monthly stock returns are non-normal and negatively skewed. Monthly stock
returns are fat tailed whereas monthly bond returns are close to normal (the critical value of the
Jarque–Bera test for a = 0.01 is 9.2).

However, for long-term planning models such as InnoALM with its one year review period,
properties of monthly returns are less relevant. The bottom panel of Table 2 contains statistics
for annual returns. While average returns and volatilities remain about the same (we lose one
year of data when we compute annual returns), the distributional properties change dramatically.
While we still find negative skewness, there is no evidence for fat tails in annual returns except
for European stocks (1970–2000) and US bonds.

The mean returns from this sample are comparable to the 1900–2000 one hundred and one
year mean returns estimated by Dimson et al. (2002). Their estimate of the nominal mean equity
return for the US is 12.0% and that for Germany and UK is 13.6% (the simple average of the two
countries’ means). The mean of bond returns is 5.1% for US and 5.4% for Germany and UK.

Assumptions about means, standard deviations and correlations for the applications of
InnoALM appear in Table 4 and are based on the sample statistics presented in Table 3. Pro-
jecting future rates of returns from past data is difficult. We use the equity means from the period
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TABLE 2: STATISTICAL PROPERTIES OF ASSET RETURNS

Stocks Eur Stocks US Bonds Eur Bonds US

1/70 1/86 1/70 1/86 1/86 1/86
Monthly returns –9/00 –9/00 –9/0 –9/00 –9/00 –9/00

Mean (% p.a.) 10.6 13.3 10.7 14.8 6.5 7.2
Std.dev (% p.a.) 16.1 17.4 19.0 20.2 3.7 11.3
Skewness −0.90 −1.43 −0.72 −1.04 −0.50 0.52
Kurtosis 7.05 8.43 5.79 7.09 3.25 3.30
Jarque–Bera test 302.6 277.3 151.9 155.6 7.7 8.5
Annual returns
Mean (%) 11.1 13.3 11.0 15.2 6.5 6.9
Std.dev (%) 17.2 16.2 20.1 18.4 4.8 12.1
Skewness −0.53 −0.10 −0.23 −0.28 −0.20 −0.42
Kurtosis 3.23 2.28 2.56 2.45 2.25 2.26
Jarque–Bera test 17.4 3.9 6.2 4.2 5.0 8.7

Source: Geyer et al. (2003)

1970–2000 since 1986–2000 had exceptionally good performance of stocks which is not assumed
to prevail in the long run.

TABLE 3: REGRESSION EQUATIONS RELATING ASSET CORRELATIONS AND
US STOCK RETURN VOLATILITY (MONTHLY RETURNS; JAN 1989-SEP 2000;
141 OBSERVATIONS)

Slope w.r.t.
US stock t-Statistic

Correlation between Constant volatility of slope R

Stocks Europe–Stocks US 0.62 2.7 6.5 0.23
Stocks Europe–Bonds Europe 1.05 −14.4 −16.9 0.67
Stocks Europe–Bonds US 0.86 −7.0 −9.7 0.40
Stocks US–Bonds Europe 1.11 −16.5 −25.2 0.82
Stocks US–Bonds US 1.07 −5.7 −11.2 0.48
Bonds Europe–Bonds US 1.10 −15.4 −12.8 0.54

Source: Geyer et al. (2003)

The correlation matrices in Table 4 for the three different regimes are based on the regression
approach of Solnik et al. (1996). Moving average estimates of correlations among all assets are
functions of standard deviations of US equity returns. The estimated regression equations are then
used to predict the correlations in the three regimes shown in Table 4. Results for the estimated
regression equations appear in Table 3. Three regimes are considered and it is assumed that 10%
of the time, equity markets are extremely volatile, 20% of the time markets are characterized
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TABLE 4: MEANS, STANDARD DEVIATIONS AND CORRELATIONS ASSUMPTIONS

Stocks Stocks Bonds Bonds
Europe US Europe US

normal periods Stocks US 0.755
(70% of the time) Bonds Europe 0.334 0.286

Bonds US 0.514 0.780 0.333
Standard deviation 14.6 17.3 3.3 10.9

high volatility Stocks US 0.786
(20% of Bonds Europe 171 0.100
the time) Bonds US 0.435 0.715 0.159

Standard deviation 19.2 21.1 4.1 12.4
extreme Stocks US 0.832
periods Bonds Europe −0.075 −0.182
(10% of the Bonds US 0.315 0.618 −0.104
time) Standard deviation 21.7 27.1 4.4 12.9
average period Stocks US 0.769

Bonds Europe 0.261 0.202
Bonds US 0.478 0.751 0.255
Standard deviation 16.4 19.3 3.6 11.4

all periods Mean 10.6 10.7 6.5 7.2

Source: Geyer et al. (2003)

by high volatility and 70% of the time, markets are normal. The 35% quantile of US equity
return volatility defines normal periods. Highly volatile periods are based on the 80% volatility
quantile and extreme periods on the 95% quartile. The associated correlations reflect the return
relationships that typically prevailed during those market conditions. The correlations in Table 4
show a distinct pattern across the three regimes. Correlations among stocks increase as stock return
volatility rises, whereas the correlations between stocks and bonds tend to decrease. European
bonds may serve as a hedge for equities during extremely volatile periods since bonds and stocks
returns, which are usually positively correlated, are then negatively correlated. The latter is a major
reason why using scenario dependent correlation matrices is a major advance over sensitivity of
one correlation matrix.

Optimal portfolios were calculated for seven cases—with and without mixing of correlations
and with normal, t- and historical distributions. Cases NM, HM and TM use mixing correlations.
Case NM assumes normal distributions for all assets. Case HM uses the historical distributions
of each asset. Case TM assumes t-distributions with five degrees of freedom for stock returns,
whereas bond returns are assumed to have normal distributions. The cases NA, HA and TA use
the same distribution assumptions with no mixing of correlations matrices. Instead the correlations
and standard deviations used in these cases correspond to an ‘average’ period where 10%, 20%
and 70% weights are used to compute averages of correlations and standard deviations used in the
three different regimes. Comparisons of the average (A) cases and mixing (M) cases are mainly
intended to investigate the effect of mixing correlations. TMC maintains all assumptions of case
TM but uses Austria’s constraints on asset weights that Eurobonds must be at least 40% and
equity at most 40%, and these constraints are binding.
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3.2 Some test results

Table 5 shows the optimal initial asset weights at stage 1 for the various cases. Table 6 shows
results for the final stage (expected weights, expected terminal wealth, expected reserves and
shortfall probabilities). These tables show that the mixing correlation cases initially assign a
much lower weight to European bonds than the average period cases. Single-period, mean-variance
optimization and the average period cases (NA, HA and TA) suggest an approximate 45–55 mix
between equities and bonds. The mixing correlation cases (NM, HM and TM) imply a 65-35
mix. Investing in US Bonds is not optimal at stage 1 in any of the cases which seems due to the
relatively high volatility of US bonds.

TABLE 5: OPTIMAL INITIAL ASSET WEIGHTS AT STAGE 1 BY CASE (PERCENTAGE)

Stocks Europe Stocks US Bonds Europe Bonds US

Single-period, mean-variance
optimal weights (average
periods)

34.8 9.6 55.6 0.0

Case NA: no mixing (average
periods) normal distributions

27.2 10.5 62.3 0.0

Case HA: no mixing
(average periods) historical
distributions

40.0 4.1 55.9 0.0

Case TA: no mixing
(average periods)
t-distributions for stocks

44.2 1.1 54.7 0.0

Case NM: mixing correlations
normal distributions

47.0 27.6 25.4 0.0

Case HM: mixing correlations
historical distributions

37.9 25.2 36.8 0.0

Case TM: mixing correlations
t-distributions for stocks

53.4 11.1 35.5 0.0

Case TMC: mixing correlations
historical distributions;
constraints on asset weights

35.1 4.9 60.0 0.0

Source: Geyer et al. (2003)

Table 6 shows that the distinction between the A and M cases becomes less pronounced over
time. However, European equities still have a consistently higher weight in the mixing cases
than in no-mixing cases. This higher weight is mainly at the expense of Eurobonds. In general
the proportion of equities at the final stage is much higher than in the first stage. This may be
explained by the fact that the expected portfolio wealth at later stages is far above the target
wealth level (206.1 at stage 6) and the higher risk associated with stocks is less important. The
constraints in case TMC lead to lower expected portfolio wealth throughout the horizon and to a
higher shortfall probability than any other case. Calculations show that initial wealth would have
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TABLE 6: EXPECTED PORTFOLIO WEIGHTS AT THE FINAL STAGE BY CASE
(PERCENTAGE), EXPECTED TERMINAL WEALTH, EXPECTED RESERVES, AND THE
PROBABILITY FOR WEALTH TARGET SHORTFALLS (PERCENTAGE) AT THE FINAL
STAGE

Stocks Stocks Bonds Bonds Expected Expected Probability
Europe US Europe US terminal reserves at of target

wealth stage 6 shortfall

NA 34.3 49.6 11.7 4.4 328.9 202.8 11.2
HA 33.5 48.1 13.6 4.8 328.9 205.2 13.7
TA 35.5 50.2 11.4 2.9 327.9 202.2 10.9
NM 38.0 49.7 8.3 4.0 349.8 240.1 9.3
HM 39.3 46.9 10.1 3.7 349.1 235.2 10.0
TM 38.1 51.5 7.4 2.9 342.8 226.6 8.3
TMC 20.4 20.8 46.3 12.4 253.1 86.9 16.1

Source: Geyer et al. (2003)

to be 35% higher to compensate for the loss in terminal expected wealth due to those constraints.
In all cases the optimal weight of equities is much higher than the historical 4.1% in Austria.

The expected terminal wealth levels and the shortfall probabilities at the final stage shown in
Table 6 make the difference between mixing and no-mixing cases even clearer. Mixing correlations
yields higher levels of terminal wealth and lower shortfall probabilities.

If the level of portfolio wealth exceeds the target, the surplus D̃j is allocated to a reserve
account. The reserves in t are computed from

∑t
j=1 D̃j and as shown in Table 6 for the final

stage. These values are in monetary units given an initial wealth level of 100. They can be
compared to the wealth target 206.1 at stage 6. Expected reserves exceed the target level at the
final stage by up to 16%. Depending on the scenario the reserves can be as high as 1800. Their
standard deviation (across scenarios) ranges from 5 at the first stage to 200 at the final stage.
The constraints in case TMC lead to a much lower level of reserves compared to the other cases
which implies, in fact, less security against future increases of pension payments.

Summarizing we find that optimal allocations, expected wealth and shortfall probabilities are
mainly affected by considering mixing correlations while the type of distribution chosen has a
smaller impact. This distinction is mainly due to the higher proportion allocated to equities if
different market conditions are taken into account by mixing correlations.

The results of any asset allocation strategy crucially depend upon the mean returns. This effect
is now investigated by parametrizing the forecasted future means of equity returns. Assume that
an econometric model forecasts that the future mean return for US equities is some value between
5 and 15%. The mean of European equities is adjusted accordingly so that the ratio of equity
means and the mean bond returns as in Table 4 are maintained. We retain all other assumptions
of case NM (normal distribution and mixing correlations). Figure 3 summarizes the effects of
these mean changes in terms of the optimal initial weights. As expected, see Chopra and Ziemba
(1993) and Kallberg and Ziemba (1981, 1984), the results are very sensitive to the choice of the
mean return. If the mean return for US stocks is assumed to equal the long run mean of 12%
as estimated by Dimson et al. (2002), the model yields an optimal weight for equities of 100%.
However, a mean return for US stocks of 9% implies less than 30% optimal weight for equities.
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Figure 3: Optimal asset weights at stage 1 for varying levels of US
equity means. Source: Geyer et al. (2003)

3.3 Model tests

Since state dependent correlations have a significant impact on allocation decisions it is worthwhile
to further investigate their nature and implications from the perspective of testing the model.
Positive effects on the pension fund performance induced by the stochastic, multiperiod planning
approach will only be realized if the portfolio is dynamically rebalanced as implied by the optimal
scenario tree. The performance of the model is tested considering this aspect. As a starting point
it is instructive to break down the rebalancing decisions at later stages into groups of achieved
wealth levels. This reveals the ‘decision rule’ implied by the model depending on the current state.
Consider case TM. Quintiles of wealth are formed at stage 2 and the average optimal weights
assigned to each quintile are computed. The same is done using quintiles of wealth at stage 5.
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144.0 171.3 198.0 230.1 306.4

Figure 4: Optimal weights conditional on quintiles of portfolio wealth at stage 2 and 5.
Source: Geyer et al. (2003)



86 THE BEST OF WILMOTT 2

Figure 4 shows the distribution of weights for each of the five average levels of wealth at
the two stages. While the average allocation at stage 5 is essentially independent of the wealth
level achieved (the target wealth at stage 5 is 154.3), the distribution at stage 2 depends on the
wealth level in a specific way. If average attained wealth is 103.4, which is slightly below the
target, a very cautious strategy is chosen. Bonds have the highest weight in this case (almost
50%). In this situation the model implies that the risk of even stronger underachievement of the
target is to be minimized. The model relies on the low but more certain expected returns of
bonds to move back to the target level. If attained wealth is far below the target (97.1) the model
implies more than 70% equities and a high share (10.9%) of relatively risky US bonds. With such
strong underachievement there is no room for a cautious strategy to attain the target level again.
If average attained wealth equals 107.9, which is close to the target wealth of 107.5, the highest
proportion is invested in US assets with 49.6% invested in equities and 22.8% in bonds. The
US assets are more risky than the corresponding European assets which is acceptable because
portfolio wealth is very close to the target and risk does not play a big role. For wealth levels
above the target most of the portfolio is switched to European assets which are safer than US
assets. This ‘decision’ may be interpreted as an attempt to preserve the high levels of attained
wealth. The decision rules implied by the optimal solution can be used to perform a test of the
model using the following rebalancing strategy. Consider the ten-year period from January 1992
to January 2002. In the first month of this period we assume that wealth is allocated according to
the optimal solution for stage 1 given in Table 5. In each of the subsequent months the portfolio is
rebalanced as follows: identify the current volatility regime (extreme, highly volatile, or normal)
based on the observed US stock return volatility. Then search the scenario tree to find a node
that corresponds to the current volatility regime and has the same or a similar level of wealth.
The optimal weights from that node determine the rebalancing decision. For the no-mixing cases
(NA, TA and HA) the information about the current volatility regime cannot be used to identify
optimal weights. In those cases use the weights from a node with a level of wealth as close as
possible to the current level of wealth. Table 7 presents summary statistics for the complete sample
and the out-of-sample period October 2000 to January 2002. The mixing correlation solutions
assuming normal and t-distributions (cases NM and TM) provide a higher average return with
lower standard deviation than the corresponding non-mixing cases (NA and TA). The advantage
may be substantial as indicated by the 14.9% average return of TM compared to 10.0% for TA.
The t-statistic for this difference is 1.7 and is significant at the 5% level (one-sided test). Using the
historical distribution and mixing correlations (HM) yields a lower average return than no-mixing
(HA). In the constrained case (TMC) the average return for the complete sample is in the same
range as for the unconstrained cases. This is mainly due to relatively high weights assigned to
US bonds which performed very well during the test period, whereas stocks performed poorly.
The standard deviation of returns is much lower because the constraints imply a lower degree of
rebalancing.

To emphasize the difference between the cases TM and TA Figure 5 compares the cumulated
monthly returns obtained from the rebalancing strategy for the two cases as well as a buy and
hold strategy which assumes that the portfolio weights on January 1992 are fixed at the optimal
TM weights throughout the test period. Rebalancing on the basis of the optimal TM scenario tree
provides a substantial gain when compared to the buy and hold strategy or the performance using
TA results, where rebalancing does not account for different correlation and volatility regimes.

Such in- and out-of-sample comparisons depend on the asset returns and test period. To iso-
late the potential benefits from considering state dependent correlations the following controlled
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TABLE 7: RESULTS OF ASSET ALLOCATION
STRATEGIES USING THE DECISION RULE IMPLIED BY
THE OPTIMAL SCENARIO TREE

Complete sample Out-of-sample
01/92–01/02 10/00–01/02

Mean Std.dev. Mean Std.dev.

NA 11.6 16.1 −17.1 18.6
NM 13.1 15.5 −9.6 16.9
HA 12.6 16.5 −15.7 21.1
HM 11.8 16.5 −15.8 19.3
TA 10.0 16.0 −14.6 18.9
TM 14.9 15.9 −10.8 17.6
TMC 12.4 8.5 0.6 9.9

Source: Geyer et al. (2003)
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Figure 5: Cumulative monthly returns for different strategies.
Source: Geyer et al. (2003)

simulation experiment was performed. Consider 1000 ten-year periods where simulated annual
returns of the four assets are assumed to have the statistical properties summarized in Table 4.
One of the ten years is assumed to be an ‘extreme’ year, two years correspond to ‘highly volatile’
markets and seven years are ‘normal’ years. We compare the average annual return of two strate-
gies: (a) a buy and hold strategy using the optimal TM weights from Table 5 throughout the
ten-year period, and (b) a rebalancing strategy that uses the implied decision rules of the optimal
scenario tree as explained in the in- and out-of-sample tests above. For simplicity it was assumed
that the current volatility regime is known in each period. The average annual returns over 1000
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repetitions of the two strategies are 9.8% (rebalancing) and 9.2% (buy and hold). The t-statistic
for the mean difference is 5.4 and indicates a highly significant advantage of the rebalancing
strategy which exploits the information about state dependent correlations. For comparison the
same experiment was repeated using the optimal weights from the constrained case TMC. We
obtain the same average mean of 8.1% for both strategies. This indicates that the constraints
imply insufficient rebalancing capacity. Therefore knowledge about the volatility regime cannot
be sufficiently exploited to achieve superior performance relative to buy and hold. This result also
shows that the relatively good performance of the TMC rebalancing strategy in the sample period
1992–2002 is positively biased by the favorable conditions during that time.
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Efficient Estimates
for Valuing American
Options
Mike Staunton∗

A
lthough the search for an exact solution to valuing American options under Black-
Scholes dynamics continues, recent developments in analytic approximations and
numerical methods now allow errors of a tiny order of magnitude to be achieved.

We compare the two best base approximations—the analytic approximation of
Ju and Zhong (1999) and the combination of a curved exercise boundary and the

integral equation of Ju (1998)—against a wide range of grid and lattice methods. Where possible,
the comparison uses both Richardson extrapolation (following Leisen 1998) and curtailed ranges
(following Andricopoulos et al. 2004). Efficiency is judged by the trade-off between accuracy and
calculation speed. Some, though not all, choices of parameters for binomial trees in addition to
finite difference methods display uniform convergence with increasing numbers of time steps and
this can allow the use of Richardson extrapolation to improve accuracy. The more familiar choices
of binomial parameters such as Cox, Ross and Rubinstein or Jarrow and Rudd exhibit oscillation
and hence cannot take advantage of extrapolation. The close connection between trinomial trees
and explicit finite differences is well known but the key discriminator between the various grid
and lattice methods should be the avoidance of calculations that contribute almost nothing to
option value. By curtailing the range of binomial trees, we make its shape resemble that of a grid
and the resulting reductions in calculation speed can be substantial while preserving the accuracy
of the full tree.

1 Richardson extrapolation
Extrapolation has been a common theme in improving analytic approximations for American
option values ever since Geske and Johnson (1984) used a sequence of European then Bermudan
option values with 1, 2, 3 and 4 exercise points. In the most recent use, Ju combined option values

∗E-mail: mstaunton@london.edu
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assuming that the early exercise boundary could be estimated as a multipiece exponential function
with 1, 2, 3 and 4 pieces and the resulting sequence of option values then used for extrapolation.
Leisen was the first to combine extrapolation with binomial trees and used 2 points based on 2n

steps (with weight 2) and n steps (with weight −1). The proper weights depend on the order of
convergence, which for American puts we assume to be 1 (the regression slope coefficients for
log error on log steps are −1.01 for LR trees, −1.12 for EFD and −0.95 for IFD).

2 Methodology
We follow the set of 16 options chosen by Andricopoulos et al. (S = 100, q = 0%, K = 95/105,
r = 6%/20%, t = 0.5/1.0 and σ = 20%/40%) and use the root mean squared error (RMSE) as
our measure of accuracy. Our experience is that the rankings of RMSE between the different
numerical methods is sufficiently close to those from using far more option values (such as
the 1250 deterministic or random options typically chosen in other comparisons), helped by the
relatively large variation in volatility for the 16 options.

The choice of ‘true’ value should have an error some orders of magnitude lower than that
of the numerical methods used in any comparison. An all-too common choice is that of the
CRR binomial tree with 10 000 time steps. However, this choice is insufficiently accurate for our
purposes, and so we prefer to extrapolate from the estimates of LR trees with 4999 and 9999
steps. When measured against this benchmark, the CRR tree with 10 000 steps had an RMSE of
1.28E-4. It should be understood that all RMSE estimates quoted in this chapter assume that the
‘true’ value is that obtained from the LR2 4999 binomial tree method.

3 The base methods
The chart in Figure 1 confirms why we have chosen JZ and Ju (EXP2, EXP3 and EXP4) as
our base methods. We have taken the RMSE and calculation speed for the 16 put options of the
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Figure 1: Previous comparisons
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base methods using VBA code on a Pentium 4 2.66 GHz with 512 MB of RAM, and then used
EXP3 to scale the previous results from the paper by Ju. The chart is a simple X-Y plot where
both axes are given a logarithmic scale. Points at the top left of the chart are very quick but less
accurate while movements along the diagonal towards the bottom right achieve greater accuracy
but are getting progressively slower. A perfect method would plot in the bottom left corner but it
is more worthwhile instead to seek undominated methods that have no better methods to their left
or below them. You can see that the JZ, EXP2, EXP3 and EXP4 dominate all the other methods
chosen by Ju and hence form our base methods. Ju chose comparator methods with a similar
accuracy and speed to his three approaches apart from the sole CRR binomial tree with 800 steps.
His methods are clustered with computation speed between 100 and 1000 milliseconds combined
with RMSE almost always above 1.00E-3. We have added the much quicker JZ approach from
their subsequent paper and, for ease of comparison, used the same scales for all the charts in
this chapter.

4 Explicit finite differences
The chart in Figure 2 compares the explicit finite difference method, without (EFD) and with
two-point extrapolation using n and 2n time steps (EFD2). We have chosen the values of λ2

(where �x = σλ
√

�t) to minimise the errors with 1499 time steps and these were 1.71 for
EFD and 1.87 for EFD2. Despite this optimisation, the explicit finite difference method performs
relatively poorly against the base methods. The EFD with 99 steps is on a par with EXP2
but the EFD with 999 steps has a slightly lower error than EXP4 but is seven times slower.
There is no gain from extrapolation as the extra calculation time outweighs any improvement in
accuracy and the EFD2 with 1499 steps has a slightly lower error than EXP4 but is 25 times
slower.
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Figure 2: Explicit finite difference
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5 Implicit finite differences
The chart in Figure 3 compares the implicit finite difference method, again without (IFD) and
with two-point extrapolation (IFD2). The values of λ2 that minimised the errors with 1499 time
steps were 2.17 for IFD and 2.08 for IFD2. The implicit finite difference methods perform worse
than their explicit finite difference counterparts, though there are gains from extrapolation. The
IFD with 499 steps has a slightly lower error than EXP2 but is 25 times slower. The IFD2 with
999 steps has a slightly lower error than EXP4 but is 59 times slower.
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Figure 3: Implicit finite difference

6 The Leisen and Reimer binomial tree
The chart in Figure 4 compares the LR binomial tree method, again without (LR) and with two-
point extrapolation (LR2). The LR tree is competitive over a much wider spectrum of computation
speeds and is better than EXP2 of the base methods but slightly worse than EXP3.

Extrapolation always improves efficiency and, even excluding the outlier for LR2 with 99
steps, the LR2 method is probably on a par with the EXP3 but worse than EXP4 of the base
methods. The LR2 tree with nine steps is only twice as slow as the very quick JZ method but, at
the other end of the speed spectrum, the LR2 tree with 1499 steps reached previously uncharted
territory with an RMSE of only 2.30E-5.

7 Curtailing the range for binomial trees
The chart in Figure 5 compares the curtailed range LR tree method, again without (LRC) and with
two-point extrapolation (LRC2). By curtailing the range (here to within six standard deviations of
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Figure 4: Binomial tree extrapolation
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Figure 5: Binomial tree curtailed range

the mean) we preserve the accuracy but reduce calculation speed by between 26% with 99 steps
and 79% with 1499 steps. This puts the LRC2 method with 249 steps within striking distance of
the EXP4 base method (slightly worse accuracy but taking 1.49 times as long). But we preserve
the dominance for methods with the lowest errors, achieving the RMSE of 2.30E-5 in less than
10 000 milliseconds.

8 Conclusions
The drawback of all the methods apart from the grid methods is that they can only value a single
option at a time whereas the finite difference methods can value options with a wide range of
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strike price using only the single grid. In addition there are potentially superior methods (such
as Crank-Nicholson) that could improve the efficiency of the finite difference methods. But the
LRC2 binomial trees are still likely to be very close to the most efficient methods for valuing
American puts, even allowing for this. For example, the LRC2 binomial tree with 499 steps is 11
times quicker than the EFD2 method with 1499 steps and 25 times quicker than the IFD2 method
with 1499 steps. What is certainly clear is that all binomial trees should use the LR choice of
parameters and be complemented with curtailed ranges and Richardson extrapolation.
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9 Appendix: VBA code for Leisen
and Reimer binomial tree
Option Base 0

Function VAAmerPutLR#(S#, K#, r#, q#, tyr#, sigma#, nstep%)
’ Returns LR Bin Amer Put Value

Dim delt#, erdelt#, sigt#, M1#, d2#, c1#, pu#, pd#, c2#
Dim u#, d#, du#, lnu#, lndu#, lnS#, pudt#, pddt#, Si#
Dim i%, j%
Dim vvec#()
If nstep Mod 2 = 0 Then nstep = nstep + 1
ReDim vvec(nstep)

delt = tyr / nstep
erdelt = Exp(-r * delt)
sigt = sigma * Sqr(tyr)
M1 = Exp((r - q) * delt)
d2 = (Log(S / K) + (r - q - 0.5 * sigma * sigma) * tyr) / sigt
c1 = d2 / (nstep + 1 / 3 + 0.1 / (nstep + 1))
pu = 0.5 * (1 + Sgn(d2) * Sqr(1 - Exp(-c1 * c1 * (nstep + 1 / 6))))
c2 = (d2 + sigt) / (nstep + 1 / 3 + 0.1 / (nstep + 1))
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pd = 0.5 * (1 + Sgn(d2 + sigt) * Sqr(1 - Exp(-c2 * c2 * (nstep + 1 / 6))))
u = M1 * pd / pu
d = M1 * (1 - pd) / (1 - pu)
du = d / u
lnu = Log(u)
lndu = Log(du)
lnS = Log(S)
pudt = erdelt * pu
pddt = erdelt * (1 - pu)

Si = Exp(lnS + nstep * lnu - lndu)
For i = 0 To nstep
Si = Si * du
vvec(i) = Max(K - Si, 0)

Next i

For j = nstep - 1 To 0 Step -1
Si = Exp(lnS + j * lnu - lndu)
For i = 0 To j
Si = Si * du
vvec(i) = Max(pudt * vvec(i) + pddt * vvec(i + 1), K - Si)

Next i
Next j

VAAmerPutLR = vvec(0)
End Function
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The Relative Valuation
of an Equity Price Index1

Ruben D. Cohen

A new approach for the relative valuation of an equity price index is presented. The
method is based on a coordinate transformation or mapping, which enables one to
weigh the index against the aggregated earnings and GDP. This, therefore, gives rise
to the notion of relative valuation between the index, the earnings and the GDP. A
practical demonstration of this is then provided for the US, UK and Japan economies
and some of their major equity indices, namely the S&P500, FTSE100 and TOPIX,
respectively.

Another potential application of the above is also discussed, which relates to
forecasting the GDP. This stems from the assumption that the expected GDP, one
year ahead from today, is readily priced in today’s interest rates. The method is further
applied to computing duration. This is shown to circumvent the difficulties that are
generally associated with calculating the parameter.

1 Introduction
Relative valuation is a generic term that refers to the notion of comparing the price of an asset
to the market value of similar assets. In the field of securities investment, the idea has led
to important practical tools, which could presumably spot pricing anomalies. Over time, these
tools have become instrumental in enabling analysts and investors to make vital decisions on
asset allocation.

In equities, the concept separates into two areas—one pertaining to individual equities and the
other to indices. The most common methodology for the former is based on comparing certain
financial ratios or multiples, such as the price to book value, price to earnings, EBITDA to
enterprise value, etc., of the equity in question to those of its peers (see, for instance, Barth et al.
1998, D’Mello et al. 1991 and Peters 1991). This type of approach, which is largely popular as
a strategic tool in the financial industry, is mainly statistical and based on historical data.

For an equity index, however, the above fails mainly because it is difficult to group indices
into peer groups. Consequently, relative valuation here is generally carried out by comparing the
index’s performance to economic and market fundamentals, which may include GDP growth,
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interest rate and inflation forecasts, as well as earnings growth, among others. This style of
comparison is popular among practising economists in their attempt to rationalise the connections
between the equity markets and the economy.

The above approach also has its faults, however—one being that, even if the fundamentals
were known, there appears to be no consensus methodology, as the procedures that are generally
implemented tend to be subjective, ad hoc and dependent on personal style. Thus, it would be
useful to devise a new approach to enable one to add some objectivity to the process.

In constructing such a framework here, the classical equity valuation models are first sum-
marised, after which the role of the equity risk premium and how it fits in are clarified. A couple
or so simple propositions are then brought in to help facilitate the process. The use of this new
method is later demonstrated by (1) suggesting other potential applications, such as forecasting
the GDP and calculating duration and (2) incorporating it as a relative-valuation tool. It should
be noted that, owing to the nature of the approach, there is no need for any detailed statistical
testing, as conclusions can be drawn simply by visual examination of graphs and charts alone.

2 A background on equity valuation
Since the classical models of equity valuation are covered well in the literature, it would be
repetitive to discuss them here in any depth. Nevertheless, it is still necessary to go over some of
the assumptions and limitations that underlie these models, as they comprise part of the foundation
upon which the new model for relative valuation is based.

2.1 The classical models of equity valuation

In the classical theory of equity valuation, three relationships dominate. They are:

Sf (t) − S(t)

S(t)
+ δf (t)

S(t)
= RM(t) (2.1)

δf (t) − δ(t)

δ(t)
+ δf (t)

S(t)
= RI (t) (2.2)

and

Ef (t)

S(t)
= RF (t) (2.3)

where S(t) and δ(t), respectively, are the price and dividends at time t , while Sf (t), δf (t) and
Ef (t) signify the ‘expected’ price, dividends and earnings (after interest and tax, but before
dividends). These are yearly expectations, generated for one year ahead from today.

With regards to the above, note that, while Equation 2.1 is an identity, with RM(t) denoting the
expected total rate of return, Equations 2.2 and 2.3 represent valuation models, namely, Gordon’s
Growth Model2 and the discounted-cash-flow (DCF) relationship,3,4 respectively, with RI (t) and
RF (t) being their expected discount rates. The equity risk premium is discussed briefly in the
next section, after which the derivation of the relative valuation model will be carried out.
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2.2 The equity risk premium
Owing to its importance in the area of equity investment, the equity risk premium has always
attracted attention from academics and practitioners. Countless papers have been written so far on
the subject, each proposing a reason for why the risk premium should exist, what it depends on
and/or how large it should be. Although many of these works present conflicting theories and/or
conclusions, all concur unanimously that the risk premium is a result of uncertainties. It is not the
concern here to discuss what causes these uncertainties. These uncertainties simply exist, have
always been and will remain to be around as long as no one can predict accurately what the
future—near-term or far—holds for the economy and markets.

What is relevant here is how does the equity risk premium, as a parameter, get integrated into
valuation? By definition, the risk premium is the difference between the rate of return or discount
rate, which could be any of the ones appearing in Equations 2.1–2.3 above, and some ‘risk-free’
rate.5 As to what discount rate and risk-free rate one should use is another matter, which, again,
shall be left out here. Rather, what is important is that under total and unconditional absence of
all uncertainty—past, present and future—the risk premium would not exist, so that all the rates
of return that appear in Equations 2.1–2.3 become equal to the ‘true’ risk-free rate, which itself
would remain constant and free of volatility.6 This, therefore, leads to Proposition 1, which may
be expressed as:

Proposition 1 In the absence of all uncertainty and change—past, present and going for-
ward—all risk premiums become zero.

Thus, what entails the above proposition is that all arbitrage opportunities between different
types of securities disappear. For instance, equity and fixed income instruments will yield the
same, as the yield curve flattens and becomes horizontal. In this instance, therefore, all yields
will equal b∗, where b∗ symbolises the ‘true’ risk-free rate. Moreover, in the absence of the risk
premium, all rates of return (or discount rates) in Equations 2.1–2.3 will also equal b∗.

In addition to the above, the golden rule of economics enters also, so that

d ln G

dt
=

(
∂ ln G

∂t

)
b=b∗=constant

= b∗ (2.4)

where G is the level of the nominal GDP and b is the interest rate, which is set constant at b∗.
Finally, all forecasts in 2.1–2.3 above—i.e. Sf (t), δf (t) and Ef (t)—become identical to their
real-time counterparts, S(t + 1), δ(t + 1) and E(t + 1), respectively, realised a year later at t + 1.

With Proposition 1 in place, Proposition 2 may now be stated as:

Proposition 2 Under Proposition 1, the golden rule applies also to the rate of growth in
equity earnings.

Proposition 2 basically unites the golden rule, as it relates to the GDP in Equation 2.4, to
equity earnings as well. This is possible under the above circumstances because equity earnings,
or profits, comprise a subset of the GDP and, in the absence of arbitrage, all subdivisions within
the GDP must yield at the same rate.

Quantitatively, this is expressible by
(

∂ ln E

∂t

)
b=b∗=constant

= b∗ (2.5)
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where E is the equity earnings. Thus, under Propositions 1 and 2, with all rates of return in
2.1–2.3 being equal to b∗, as well as the forecasts of S, δ and E remaining identical to their
real-time counterparts a year later, Equation 2.5 may be applied to 2.3 to give:

(
∂ ln E

∂t

)
b=b∗

=
(

∂ ln S

∂t

)
b=b∗

= b∗ (2.6)

since, in this case, the discount rate, RF , also equals b∗.
The implication of Equation 2.6, which states that, subject to the conditions imposed above,

the golden rule applies as well to the equity price, S(t), is significant. This is because, upon first
using the approximation7

(
∂ ln S

∂t

)
b=b∗

≈ S(t + 1) − S(t)

S(t)
(2.7)

then substituting 2.6 and 2.7 into 2.1 and, finally, setting the rate of return, RM(t), equal to b∗,
all in the absence of the risk premium, the dividend yield, δ(t + 1)/S(t), tends to zero. This
simply suggests that, in a world with no uncertainty and change, and, hence, no risk premiums,
the investor will not demand any dividend yield.8

Therefore, do markets pay and/or investors demand a positive dividend yield because of
uncertainties? This, inevitably, points to the much debated issue of the dividend puzzle, along
with its link to the equity risk premium, both of which will be left out here as they are not
relevant to this work, but, nonetheless, whose details may be found elsewhere (Cohen 2002).
Notwithstanding, the above conclusions do lead to the next step, which is to develop a model for
the relative valuation of an equity price index.

3 A model for the relative valuation of an equity
price index
The new model for relative valuation is constructed here in two ways—one focusing on equity
(Section 3.1) and the other on the fundamentals, namely GDP and equity earnings (Section 3.2).
The latter two occupy the same section because their underlying principles happen to be the same.
The final results will then be united to present the relative valuation measures.

3.1 The equity model
Beginning here with Equation 2.6, which states

(
∂ ln S

∂t

)
b=b∗

= b∗ (2.6)

it follows that ln S could be written as a function of time, t , as well as b∗ —i.e.:

ln S = ln S(b∗, t) (3.1)

In the above, holding the discount rate constant at b∗ clearly imposes a severe constraint on
S. This, however, may be relaxed by proceeding as follows. Very briefly, in place of writing
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ln S(b∗, t) as done in 3.1, it shall be expressed as

ln S = ln S(b, t) (3.2)

which generalises S to account for a time-variable discount rate, b = b(t), instead.
The rationale behind Equation 3.2 is that the effects of the market, and the economy in general,

on S are presumed to enter separately through two fundamental elements, one which is b and the
other which comprises everything else that falls outside the reign of b. As the second variable
appears as time, t , it renders Equation 3.2 general and, hence, together with b(t), it should capture
all the economic and market effects on the price, S. In other words, expressing S in the form of
3.2 effectively removes all the restrictions imposed on it earlier in Equation 3.1.

In view of the above, the total time differential of Equation 3.2, subsequently, becomes:

� ln S(b, t)

�t
=

(
∂ ln S

∂t

)
b

+
(

∂ ln S

∂b

)
t

�b

�t
(3.3)

where � denotes time-wise differential—i.e. �b ≡ b(t + 1) − b(t). While the first partial dif-
ferential—i.e. (∂ ln S/∂t)b —has been shown to be equal to b (see Equation 2.6), the second,
(∂ ln S/∂b)t , is simply the stock duration, which is the sensitivity of the price to changes in b at
some given point in time.

Being an ‘exact differential’, therefore, the two components in Equation 3.3 are coupled to
each other via:

(
∂

∂b

(
∂ ln S

∂t

)
b

)
t

=
(

∂

∂t

(
∂ ln S

∂b

)
t

)
b

(3.4)

Since, by virtue of 2.6, the left-hand side of the above is 1, the above equation simplifies to:

(
∂

∂t

(
∂ ln S

∂b

)
t

)
b

= 1 (3.5)

which may be integrated twice to yield a general solution of the form:

ln S = bt + α0 + α1b + �̃(b)

where α0 and α1 are integration constants and �̃(b) a yet unknown function of only b.
Alternatively, the above may be recast into:

ln S − bt = �(b) (3.6)

where �(b) is another function of b. The latter representation conveniently absorbs �̃(b), α0 and
α1b into a single function, �(b).

It thus follows from 3.6 that plotting the quantity ln S − bt against b should, in theory, produce
a single curve, depending only on b. This transformation, as a result, brings in all the effects of
time on ln S − bt through b. A schematic illustration of this is presented in Figure 1, where a
mapping of S versus b into ln S − bt versus b is shown to introduce some type of regularity to a
relatively disordered graph.9,10
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Figure 1: Schematic of the convergence of data points
under the proposed coordinate transformation

In light of the derivation so far, it is necessary to mention two points. First, even though
Equation 3.6 is extracted from what appears to be too theoretical an approach, it is indeed easy
to apply to real situations and, also, as it shall be demonstrated shortly, it does possess other
practical uses too. Second, questions relating to what b is—i.e. what interest rate should one
use here—have undoubtedly been raised by now. The answer to these, as it will turn out later,
happens to be straightforward. Beforehand, however, the same logic is applied next to both the
nominal GDP and earnings, as similar transformations are derived.

3.2 Applications to GDP and earnings

It is well accepted that movements in the equity price index are tied closely to corporate
earnings and, even more generally, to the economy. Common sense further dictates that a
bull market comes typically with a strong economy and a bear market with a weak one. An
explanation for this correlation is that the market comprises a subset of the economy—i.e.
corporate earnings constitute a (small) fraction of the GDP. This, therefore, should enable
one to derive a GDP relationship analogous to the one for equity, as well as for corporate
earnings.

Before going into that, however, we need to introduce, with the help of the DCF,11 a couple
of analogies to the equity price index. For this, define VG and VE as the ‘values’ associated with
the nominal GDP and corporate earnings, respectively.12 Therefore, under Propositions 1 and 2,
VG could be represented by

VG ≡ Gf

b∗ (3.7a)

and VE by

VE ≡ Ef

b∗ (3.7b)

where Gf and Ef , respectively, are the time-t expectations of the nominal GDP and corporate
earnings one year ahead, at t + 1. Hence, with b∗ analogous to the discount rate in a ‘constant’
world, the DCF valuation model is being imposed on the economy as well. It should further be
stressed that the one-year-ahead nominal GDP, i.e. G(t + 1), will from now on be implemented
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instead of the expected for no reason other than convenience, as it shall be assumed that the two
converge in an information-efficient economy. For the expected corporate earnings, Ef , on the
other hand, Datastream’s aggregate I/B/E/S forecasts will be presumed sufficient for the purposes
of this work.

Now, with the above analogy in place, it is simple to demonstrate that upon relaxing the
constraint on b∗ (i.e. replace b∗ with b, as it was done in going from Equation 3.1 to 3.2), the
same rules that govern the price index should apply as well to VG and VE , yielding expressions
similar to Equation 3.6, but with VG and VE substituted for S. This, consequently, leads to:

ln VG − bt = �(b) (3.8a)

and

ln VE − bt = �(b) (3.8b)

where, as before, �(b) and �(b) are functions of only b.
It should be emphasised that, even though the same transformation that presides over the

equity model applies to here as well, the functions �(b) and �(b) may not necessarily be the
same as �(b). A comparison of these will be made later; however, certain issues that this raises,
namely of the interest rate, ‘reversibility’ and ‘structural or regime shifts’, must be addressed
beforehand.

3.2.1 Reversibility and structural shifts The representations for the equity price index, GDP
and earnings, which are provided in Equations 3.6 to 3.8, lead to the important notions of
‘reversibility’ and ‘structural shifts’. Recognising that structural shifts tend to alter the behaviour
of the economy and the markets, an important objective here, as in any economic and finan-
cial analysis, would thereby consist of defining ways for detecting and, possibly, classifying
them.

To carry this out, observe that ln S − bt, ln VG − bt and ln VE − bt must depend solely on b

via the functions �(b), �(b), and �(b), respectively. The effect of time, as mentioned earlier,
enters indirectly through b. Whether or not this functional dependence of �, � and � on b is the
same in all situations is not of concern now, but, eventually, it shall be dealt with.

An important by-product of such dependence is the concept of ‘reversibility’, which may be
explained via Figure 1 as follows. In reference to this figure, it is noted that, while the unmapped
price, S, varies with both b and t and leads to a scattered plot of S versus b, the mapped counterpart
changes only with b. This implies that if, for example, the price is S1 at time t1, when b equals,
let us say, 5%, then at a later time t2, when b reverts back to 5%, the transformed parameters,
ln S1 − bt1 and ln S2 − bt2, calculated at both times, t1 and t2, respectively, must reach the same
value again, regardless of the path taken from 1 to 2. This, of course, should apply to VG and VE

as well, simply by virtue of Equations 3.8a and 3.8b.
Alternatively, a structural or regime shift implies the contrary. If, for instance, a transformed

plot produces notably disparate lines, then it is likely that a structural shift has occurred somewhere
in between. Schematically, a structural shift is exemplified in Figure 2, where mapping S versus
b into ln S − bt versus b over a given time frame leads to distinctive characteristic patterns. In a
similar manner, outliers should, under this type of transformation, appear as shown in Figure 3.
Empirical evidence of these phenomena, namely reversibility, regime shifts and outliers, will be
provided in Section 4.
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Figure 2: Schematic of how a regime shift manifests itself under
the suggested coordinate transformation. A mapping of S versus b
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Figure 3: Schematic of how outliers become visible
under the suggested coordinate transformation. A
mapping of S versus b into ln S − bt versus b should
clearly separate outliers from the function, �(b)

3.2.2 The interest rate As mentioned at the end of Section 3.1, the issue of the interest rate
is an important one. Putting it more precisely, what should one use for b in Equations 3.6 and
3.8a,b in order to test their validity?

Obviously, several choices exist. These include all the different yields associated with the
different, available bond maturities, thus adding to the subjectivity. But, nevertheless, an attempt
is made later to settle this point.

Upon following the steps that led to the coordinate transformations in Equations 3.6 and 3.8a,b,
it is noted that (bond) maturity or tenor does not enter into the picture. Furthermore, in the context
of the reversibility property discussed earlier, it should also not matter which interest rate is used.
In other words, using b as the yield of any bond maturity, be it 2 years or 7 years or 30 years,
etc., should be acceptable, but only if one moves along a characteristic line, i.e. �(b), �(b), and
�(b), which belongs to a certain structural regime. The invariance towards maturity should not
be expected to hold across regime shifts and/or to outliers.
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4 Evidence of reversibility, outliers
and structural shifts
If the hypotheses put forward above were to be proven valid, then upon plotting ln X − bt against
b, where X could signify S, VG or VE , one should expect to obtain a single curve, or, more
generally, a series of curves, each pertaining to some particular structural regime in the market
and/or the economy. Furthermore, it was argued that b could represent the yield associated with
any tenor. Examples of each of these, with specific applications to the US, UK and Japan (JP)
economies and markets, will be provided in the following sections. Prior to this, however, one
must carefully study Table 1, which illustrates how the functions �(b), �(b), and �(b) are
calculated.

4.1 Applications to US data

To evaluate the long-run applicability of the model to the US market, refer to Figures 4a,b, where
in Figure 4a the S&P price data from 1950 to 200013 are plotted both in raw form, as S versus b,
and transformed, as ln S − bt versus b, where b has been chosen to be the 10-year US government
bond yield.14 It is evident here that the raw data, as plotted in Figure 4a, exhibit no regular pattern,
whereas the mapped form in Figure 4b definitely displays a convergence that is consistent with
theory. A similar conclusion can be derived also from Figures 5a,b, where the aggregated earnings
are displayed, both raw and transformed, over the same time period.15

Shorter-term, but more detailed, data (quarterly as opposed to annual) for the US, covering from
about 1980 to 2004, are presented in Figures 6a–c, where evidence of all the above-mentioned
effects, namely convergence, regime shifts and outliers, are clearly depicted. In all instances that
follow from now on, the data come from Datastream, using the codes tabulated in Table 2. Also,
unless otherwise specified, b will be given by the 10-year government bond yield.

Figures 6a–c present plots of quarterly numbers pertaining to the S&P500 price, I/B/E/S earn-
ings forecast and US GDP, respectively, comparing the raw data against their mapped counterparts.
Convergence is noticeable in all cases, although the support is more compelling in the earnings
and GDP plots shown in Figures 6b and 6c.

Figure 6a, which pertains to the price index, demonstrates how an outlier, which could other-
wise remain hidden in the raw data, stands out in the mapped plane. The outlier highlighted here
represents the quarter just before the August 1987 crash, when the overpricing in the S&P500
index, which was then also present in many other national and international indices, led subse-
quently to the crash.

Figures 6b and 6c, on the other hand, depict structural breaks and regime shifts in the aggre-
gated earnings and GDP. In the interest of objectivity, however, as well as owing to the primary
focus of this work, which is to introduce the capabilities of the model rather than guess the causes
that could have led to these shifts, there will be no further speculation here. An economist is, per-
haps, better suited to undertake this task, by observing the timing of these breaks and connecting
them to fundamental (economic and/or market) changes that might have occurred then.

4.2 Applications to UK and JP data

The UK data, concentrating on the FTSE100 price index, aggregated I/B/E/S earnings forecasts
and GDP, are presented in Figures 7a–c, respectively. Once again, similar to the US case in
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Figure 4: Raw and transformed data, respectively, of the S&P price versus the
interest rate from 1950 to about 2000. Transformation of the price data is carried
out according to Equation 3.6

Figure 6a, the FTSE100 price index, when mapped, depicts outliers that coincide exactly with
time periods immediately prior to the August 1987 crash. In addition, evidence of structural breaks
can also be observed in mapped plots of both earnings and GDP.

The JP data, which are included in Figures 8a–c, are substantially different. First, the impact
of the transformation on the TOPIX price, as depicted in Figure 6a, is non-existent. Obviously,
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Figure 5: Raw and transformed data, respectively, of the S&P aggregated
earnings versus the interest rate from 1950 to about 2000. Transformation of
the earnings data is carried out according to Equations 3.7a and 3.8a

the TOPIX does not abide by the same rules that the S&P500 and FTSE100 indices do. As to
the reason for this, whether it is a different valuation technique that underlies the TOPIX or a
complete detachment between this index and the bond yield (i.e. inapplicability of Equation 3.2
to the TOPIX) is not up for speculation here. What is clear altogether is that this approach does
not work for the TOPIX and, hence, cannot be used here.



RELATIVE VALUATION OF AN EQUITY PRICE INDEX 111

0

400

800

1200

1600

3 5 7 9 11 13

Q3 1987

S&P500 raw data

4.4

4.9

5.4

5.9

6.4

3 5 7 9 11 13

Q3 1987

S&P500 transformed

Figure 6a: The S&P500 price index raw data plotted against the 10-year US government
bond yield (left) and its transformed counterpart (right). Note the highlighted point
representing the quarter prior to the August 1987 crash, where the market was known to be
overpriced. Time frame for the plot is Q1 1981 to Q1 2004. The darker point on the top
left-hand side is the most current
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Figure 6b: The S&P500 I/B/E/S earnings forecast raw data plotted against the 10-year
US government bond yield (left) and its transformed counterpart (right). Note the
existence of a regime shift, similar to that portrayed in Figure 2. Time frame for the plot
is Q1 1981 to Q1 2004. The darker point on the top left-hand side corresponds to the latest
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Figure 6c: The US GDP raw data plotted against the 10-year US government bond yield
(left) and its transformed counterpart (right). Once again, note the existence of regime shifts.
Time frame for the plot is Q1 1981 to Q1 2004. The encircled region covers Q1 2000 to Q4
2003, which, as it appears on the right-hand plot, belongs to a single structural regime and
appears to contain no outliers
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TABLE 2: DATASTREAM CODES FOR THE QUARTERLY
DATA USED IN FIGURES 6 AND THEREAFTER

Country Parameter Datastream code

S&P500 S&PCOMP
I/B/E/S earnings forecast @:USSP500(A12FE)
US GDP USGDP . . .B

US 30-year US gov. bond yld. BMUS30Y(RY)
10-year US gov. bond yld. BMUS10Y(RY)
7-year US gov. bond yld. BMUS07Y(RY)
5-year US gov. bond yld. BMUS05Y(RY)
2-year US gov. bond yld. BMUS02Y(RY)

FTSE100 FTSE100
I/B/E/S earnings forecast @:UKFT100(A12FE)
UK GDP UKGDP . . .B

UK 20-year UK gov. bond yld. BMUK20Y(RY)
10-year UK gov. bond yld. BMUK10Y(RY)
7-year UK gov. bond yld. BMUK07Y(RY)
5-year UK gov. bond yld. BMUK05Y(RY)
2-year UK gov. bond yld. BMUK02Y(RY)

TOPIX TOKYOSE
I/B/E/S earnings forecast @:JPTOPIX(A12FE)
JP GDP JPGDP . . .B

JP 30-year JP gov. bond yld. BMJP30Y(RY)
10-year JP gov. bond yld. BMJP10Y(RY)
7-year JP gov. bond yld. BMJP07Y(RY)
5-year JP gov. bond yld. BMJP05Y(RY)
2-year JP gov. bond yld. BMJP02Y(RY)

In contrast, however, a pattern does emerge when the I/B/E/S earnings forecasts are trans-
formed, as shown in Figure 8b. Here, there is evidence of a structural shift in the earnings,
coinciding to around the end of 1994 when the 10-year yield was approximately 4.5%. The JP
GDP, on the other hand, which is illustrated in Figure 8c, displays a remarkably tight pattern,
showing no signs of any structural change in the economy, at least from Q1 1984 to Q1 2004,
the selected range of the data.

In the case of JP, therefore, one could conclude that bond yields (1) are completely detached
from the TOPIX price, (2) have an influence on expected earnings and (3) are tightly coupled
to the GDP. This, subsequently, could mean that in Japan, the GDP and TOPIX price are not
connected to one another, so that any attempt to infer the direction of the TOPIX price, and
possibly other Japanese equity indices, from expected movements in either the interest rates
and/or the GDP is doomed to fail.

4.3 The impact of bond maturity

Having thus far concentrated only on the 10-year government bond yield, it is time now to
question the applicability of the approach to other bond maturities. According to the governing
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Figure 7a: The FTSE100 price index raw data plotted against the 10-year UK government
bond yield (left) and its transformed counterpart (right). Note the highlighted points
representing the two quarters prior to the August 1987 crash, where the market was known
to be overpriced. Time frame for the plot is Q1 1981 to Q1 2004. The darker point on the top
left-hand side corresponds to the latest
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Figure 7b: The FTSE100 I/B/E/S earnings forecast raw data plotted against the 10-year UK
government bond yield (left) and its transformed counterpart (right). Note the existence of
regime shifts, similar to that portrayed in Figure 2. Time frame for the plot is Q1 1981 to Q1
2004. The darker point on the left-hand side corresponds to the latest
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Figure 7c: The UK GDP raw data plotted against the 10-year UK government bond yield
(left) and its transformed counterpart (right). Once again, note the existence of regime shifts.
Time frame for the plot is Q1 1981 to Q1 2004. The encircled region covers Q1 2000 to Q4
2003, which, as it appears on the right-hand plot, belongs to a single structural regime and
contains no outliers
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equations 3.6–3.8, bond maturity, T , plays no role in the model. Therefore, going back to
Section 3.2.2, this means that, in the absence of outliers and structural shifts, the characteristic
line of convergence in the mapped frame of reference should remain insensitive to the different
maturities. More simply stated, all points that result from applying the coordinate transformation
using yields from different bond maturities should, under the above conditions, fall exactly on the
same line, regardless of maturity.

The validity of the above may now be examined, again visually, by producing plots similar to
Figures 6–8. In doing so, care must be taken to select regions where structural shifts and outliers
are absent, of which the area encircled in Figure 6c is one. This region contains the time frame
Q1 2000 to Q4 2003 for the US GDP. Bearing in mind that the graph was constructed using the
10-year US government bond yield, we now ask what happens if different maturities were also
included in the same plot.

The impact of bond maturity on, or rather the absence of its effect in, the present model is
clearly demonstrated in Figures 9a–c, which enlarge the areas highlighted in Figures 6c, 7c and
8c, for the US, UK and JP,16 respectively. In each of these figures, 9a–c, different government
bond tenors—namely the 2, 5, 7, 10 and 30 years (20 instead of 30 years in the case of UK)—were
plotted together, with the idea that any observable scatter could be attributed to the differences
in maturities. Nevertheless, one obtains in all cases a remarkably tight fit, which provides further
testimony to the earlier presumption (see Section 3.2.2) that the underlying curve is invariant to
different maturities.

5 Potential applications
Prior to going forward with the development of the relative valuation model, two types of appli-
cations are brought to mind, both of which could have possible uses in the field of investment.
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coordinates represent b and ln VG − bt , respectively
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These applications, which are described next, result from the properties of the curves described
in Section 4 and consist of forecasting the GDP and calculating the duration.

5.1 Forecasting the GDP
To illustrate the GDP forecasting capability of the model, one needs to combine Equations 3.7a
and 3.8a, replace b∗ by b and arrange the result as:

Gf (t) = exp[�(b) + bt + ln b] (5.1)
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Recognising that Gf (t) is the GDP expectation, Equation 5.1 then allows one to recover the
expected GDP, one year from today, given today’s yield, b, as well as the empirically deter-
mined function, �(b), which is extractable from plots similar to Figures 9a–c. The assumptions
underlying this method are that (1) today’s bond yields have the expected GDP priced in them
and (2) between now and one year ahead from now, no structural shifts will occur, so that the
function �(b) retains its shape over the time period between now and then.

Let us now apply Equation 5.1 to the three cases of interest here, namely the US, UK and JP.
Focusing initially on the US, it is observed that a fourth-order polynomial curve runs satisfactorily
through all the points in Figure 9a, comprising the yields associated with the different tenors. This
curve, therefore, provides an empirical relation for �(b) with an R2 of 0.99975. The tightness of
the fit is noteworthy in Figure 10a, where the polynomial expression is also included.

What follows now is a step-by-step demonstration of how a forecast for the US GDP, let’s
say of Q1 2005,17 could be obtained using Equation 5.1. (1) Compute from Table 1 the mapping
of GDP to �(b). This, when plotted against b, leads to Figure 10a. (2) A curve fit, similar to
the one in that figure, could then be obtained to represent the behaviour of �(b) with respect to
b. In this case, a fourth-order polynomial was sufficient to achieve a very tight fit. (3) Return to
Equation 5.1 and note that the expected GDP for Q1 2005—i.e. Gf (t = Q1 2004)—may now
be calculated by substituting the values of b, �(b) and the quantity bt, where, in correspondence
to Q1 2004, b and t are 4.031% and 23, respectively (see Table 1).

Repeating the above procedure for the different bond maturities leads to Figure 10b, as well
as Table 3, where different estimates of the Q1 2005 expected GDP have been obtained. These
fall between 11 350 and 11 906 (in appropriate units), which correspond to the stretch of tenors
between 2 and 30 years, respectively. A simple average finally provides an overall estimate of
11 619 for the Q1 2005 US GDP. Note that, since this value is based on yields that are market
driven and which tend to vary rather gently on a day-to-day basis, the estimate for one-year-ahead
GDP should also behave similarly.
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Figure 10a: Same as Figure 9a, but with a fourth-order
polynomial curve fit passing through the yields belonging to the
different maturities indicated in the legend. The extremely tight fit,
as reflected by the high R2, represents the function �(b)
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the interest rate, as derived from the methodology outlined in
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TABLE 3: EXAMPLE CALCULATION ILLUSTRATING THE GDP FORECASTING
PROCEDURE. A VALUE OF 23, CONSISTENT WITH THAT IN TABLE 1, WAS USED HERE
FOR t TO SIGNIFY Q1 2004. ALSO, �(b) WAS COMPUTED USING THE POLYNOMIAL FIT IN
FIGURE 10a

Maturity, T Bond yield, b, in % bt/100 �(b) Expected GDP for Q1 05

2 years 1.687 0.38801 7.63116 11 350
5 years 2.998 0.68954 6.77352 11 566
7 years 3.544 0.81512 6.48367 11 601
10 years 4.031 0.92713 6.24891 11 671
30 years 4.911 1.12953 5.86892 11 906

Average 11 619

To validate these estimates, a back test was performed following the same steps as above.
Here, for instance, an estimate for the now historical Q1 2001 GDP level is obtainable from
the yields of Q1 2000, as well as upon utilising the same expression for �(b). This back test
provides Figures 11a–c, which pertain to the US, UK and JP, respectively. The basis of this is
Table 4, which displays the fitted polynomials, as well as the time frames involved, for all three
jurisdictions.

5.2 Calculating the duration
In the financial literature, the duration of any parameter, let’s say X, is defined as its sensitivity
to the interest rate, keeping all else constant. Thus, quantitatively, the duration of X, symbolised
here by DX, is represented by

DX ≡
(

∂ ln X

∂b

)
t

(5.2)
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Although simplistic in construct, problems abound when trying to calculate DX in practice. First,
since this application involves differentiation, then differentiating any volatile economic or market
fundamental, such as the GDP, price, earnings, etc., will lead to even more volatile outcomes. Sec-
ond, the above definition incorporates a partial differentiation with respect to b, which explicitly
requires holding the time parameter, t , constant. This is an impossible feat to achieve in practice
since expressing Equation 5.2 as the difference, let’s say, in GDP level between Q1 2001 and Q1
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Figure 11a: The US GDP forecast post-Q3 2003 derived by the
methodology outlined in Section 5.1. The historical data, which are
the solid circles, are also included to demonstrate the close fit
between model and data
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Figure 11b: The UK GDP forecast post-Q3 2003 derived by the methodology outlined in
Section 5.1. The historical data, which are the solid circles, are also included to demonstrate the
close fit between model and data
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Figure 11c: The JP GDP forecast post-Q3 2003 derived by the methodology outlined in
Section 5.1. The historical data, which are the solid circles, are also included to demonstrate the
close fit between the model and data

TABLE 4: TIME FRAMES, MATURITIES, POLYNOMIAL FITS AND THE R2 VALUES
UNDERLYING THE CURVES IN FIGURES 9a–c

Market Time frame Maturities 4th order polynomial curve fit R squared
of data used

US Q1 00 - Q1 04 2, 5, 7, 10, 30 8.3886E − 04∗b ∧ 4 − 1.8464E − 02∗b ∧ 3 +
1.7972E − 01∗b ∧ 2 − 1.2308∗b + 9.2779

99.975%

UK Q4 98 - Q1 04 2, 5, 7, 10, 20 −3.730118E − 03∗b ∧ 3 + 8.758313E − 02∗b ∧
2 − 0.9.961051∗b + 11.10780

99.932%

JP Q3 00 - Q1 04 5, 7, 10, 30 0.1246∗b ∧ 4 − 0.9396∗b ∧ 3 + 2.7093∗b ∧ 2 −
4.2651∗b + 10.509

99.960%

2000 divided by the yield b, will, implicitly, also involve a change in the time parameter. Thus,
there is no way in practice that the above expression could be worked out.

Therefore, how could one get around this? Assuming for the time being that X is the GDP
level, then, obviously, with �(b) being independent of time, the duration of the GDP—i.e. its
sensitivity with respect to the interest rate while holding all else constant—could be computed
by simply applying the partial differentiation to it. This yields the expression

DGDP =
(

∂ ln Gf (t)

∂b

)
t

= �′(b) + t + 1

b
(5.3)
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which greatly simplifies the calculation of the duration of GDP, among other data of interest. In
practice, therefore, if one were to calculate the sensitivity of the GDP in Q1 2005 with respect
to b, then it could be achieved from the above using �(b) in Table 4, along with the appropriate
value for t , which, for example, is 23 for the US, in accordance to Table 1. This approach
is mathematically more sound than the existing ones simply because the time parameter, t , is
literally being held constant in the process of calculating duration.

6 The relative valuation of an equity price index

Thus far, the model has been developed and applied to forecasting the GDP and computing
duration. What remains now is its implementation to relative valuation. This is simple as it only
involves superimposing the three empirically determined functions, �(b), �(b) and �(b), directly
on top of one another and looking for regions of deviation. It should be noted that this method
incorporates no adjustable parameters, except for a basic and necessary one that is discussed in
note 9 under Table 1.18 To illustrate how the model works, we start with a preliminary description,
along with a couple of historical examples, and then proceed with some detailed assessments.

6.1 A long-term historical example

For a preliminary demonstration, refer to Figures 4a and 4b, where, respectively, the historical
price and earnings are mapped against the US government 10-year bond yield. A direct super-
position of the two plots leads to Figure 12a, part of which has been magnified in Figure 12b.

Without dwelling too much on this, it is worth noting that the two data series, when mapped
as �(b) and �(b) and superimposed, do fall on top of one another over most of the time covered,
thus confirming that, with the exception of the period between 1950 and 1960, price and earnings
are reasonably valued relative to each other. This chart, nevertheless, is based on annual data and,
hence, does not capture the details that are to follow shortly.19 Before going into these, however,
it is worth alluding to an issue that comes up often in related literature—namely, Irving Fisher’s
assertion that the stock market was not overvalued just before its crash in 1929. An examination
of this is carried out in the next section.

6.2 Irving Fisher and the 1929 stock market crash

Let us now apply the model to provide an answer to a long-debated issue, which is whether
Fisher was right in his claim that the stock market was not overvalued before its dramatic crash
in 1929, around the time when the great depression began. This issue seems to be a popular one,
as countless papers have been written on it, each attempting to offer an explanation (see, for
example, McGrattan and Prescott (2003) and references therein). We shall also try to provide an
answer here, albeit strictly in the context of the present model.

Refer to Figure 13, which portrays a superposition of the three functions, �(b), �(b) and
�(b), on each other over the time period 1928–1940. Any deviation observed in this mapped plane
should, therefore, reflect the degree of relative valuation between the three fundamentals—being
price, earnings and GDP.

First, note that from 1928 to 1931, all three fundamentals lie, more or less, near each other,
signifying relative fair valuation. The significant deviation, which can be seen as a drop in the
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Figure 12b: Magnification of the boxed data in Figure 12a, illustrating the
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around 1960

mapped price relative to the others, begins at around 1932 and becomes dramatic afterwards.
Nevertheless, the mapped earnings and GDP remain reasonably close to one another throughout
the whole time period. This, according to the model, means that, just before its plunge, the
price was not overvalued20 in relation to the earnings and GDP, but, nevertheless, it did become
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severely undervalued afterwards. Moreover, the observation that the earnings and GDP remained
close to each other during the whole period simply implies that the former reflected the latter
fairly well throughout the recession. With this in place, we can go now to the next section and
discuss relative valuation in a more current time frame.
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Figure 13a: Superposition of the three functions, �(b), �(b) and �(b), on
each other using data covering the period 1928–1940. See Section 6.2 for
explanation

6.3 Detailed examination

This section presents a closer look at the more recent time period, whereby the quarterly data
displayed in Figures 6–8 are superimposed to exhibit signs of over- and/or undervaluation relative
to each other. This is carried out thoroughly for the US and UK, but less so for JP since the TOPIX
data, when mapped, lead to inconclusive results (see Figure 8a).

6.3.1 Relative valuation in the US data A relative valuation of the S&P500 price with respect
to earnings is illustrated in Figure 14a, revealing the regimes of severe over-undervaluation relative
to each other. In this figure, the outlier corresponding to the quarter before the Q3 1987 market
crash is highlighted, as well as the time periods of the 1990s tech bubble, the Asian crisis and
the post-2001 stock market decline.

Interesting, also, is the close-up view in Figure 14b, focusing on the time frame Q1 1999
to the present, being Q1 2004, and outlining the time-wise progression of the price and yield.
This figure essentially displays the dynamics of the price movement, which started initially as
overvalued relative to earnings, but eventually crossed the curve at around Q4 2001 to become
undervalued, again relative to earnings. In the interest of space, no more will be said here, as the
figure is self-explanatory.

Figure 14c displays a superposition of Figures 6a and 6c, relating the behaviours of the
S&P500 price and the US GDP. Once again, the 1990s bubble period, as well as the post-2001
market crash, are clearly visible in the shape of deviations of the mapped price, �(b), from the
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mapped GDP, �(b). Finally, for the US, Figure 14d portrays the mapped S&P500 earnings, �(b),
relative to the US GDP. Here, the period coinciding with the 1990s equity bubble is portrayed
by a structural regime shift in the shape of a series of earnings data points that fall parallel to,
but slightly above, the mapped GDP. Interestingly, however, the post-2001 decline in the market
price, which is clearly apparent in Figure 14a, is not reflected at all by the earnings. This supports
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Figure 14b: Close-up of Figure 14a, covering the period Q1 1999 to Q1 2004 and depicting the
movement of the mapped price relative to mapped earnings. The table on the right-hand side
lists the quarter, price and 10-year government bond yield in columns 1, 2 and 3, respectively
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the claim, albeit in retrospect, that the rise in the market’s equity price during the 1990s was
nothing but a bubble, which ultimately collapsed.

6.3.2 Relative valuation in the UK data Figure 15a, which is a superposition of Figures 7a
and 7b, displays the relative behaviour of the FTSE100 price against earnings, both in transformed
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Figure 15b: Close-up of Figure 15a, covering the period Q1 1999 to Q1 2004 and depicting the
movement of the mapped price relative to mapped earnings. The table on the right-hand side
lists the quarter, price and 10-year government bond yield in columns 1, 2 and 3, respectively

planes, throughout roughly the last 20 years. The data point pertaining to the quarter prior to the
Q3 1987 crash is, once again, highlighted. Here, however, in contrast to the S&P case discussed
in Section 6.1.1 and illustrated in Figure 14a, there is no sign, whatsoever, of a price bubble.

In the 1990s, during the peak of the dotcom bubble in the US, the FTSE100 price is observed
to follow the earnings consistently. In this case, however, what coincides with the collapse of the
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Figure 15c: Relative valuation of the FTSE100 price and the UK GDP via
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Figure 15d: Relative valuation of the FTSE100 earnings and the UK GDP via
superposition of Figures 7b and 7c

price bubble in the S&P is a regime shift in the FTSE100 mapped earnings, which appears also
to pull the FTSE100 price with it. This is further confirmed in Figure 15b, where the time-wise
movements in earnings and price are depicted in close-up. Again, as in the above and in the
interest of remaining objective, we shall not speculate here on the possible reasons for this regime
shift (in the behaviour of the earnings and the subsequent fall in the FTSE100 price). Rather, an
economist is perhaps better suited to provide an explanation for this.
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The lack of a tech bubble, similar to that in the S&P data, in the FTSE price index is again
verified in Figure 15c, where the mapped price in Figure 7a is superimposed on the mapped
UK GDP in Figure 7b. Moreover, the existence of the regime shift in the FTSE100 earnings, as
discussed in the previous paragraph, is found to be quite prominent in Figure 15d, which lays the
mapped earnings in Figure 7b directly on top of the mapped UK GDP in Figure 7c.

Altogether, based on the above and without delving into detail, one could deduce that (1) the
tech bubble that dominated the S&P500 during the 1990s did not exist in the FTSE100 market
and (2) the decline in the FTSE100 price, which coincided with the S&P500 bubble collapse, was
initiated by a regime shift in the FTSE earnings. Based on Figure 15d, this regime shift could
be ‘corrected’ by either an increase in the interest rate (to shift the post-2001 earnings line in
Figure 15d to the right to match the mapped UK GDP), an increase in earnings (to shift the same
line in Figure 15d above to match the UK GDP), or a combination of both. Once the mappings
coincide, fair valuation will presumably be achieved between earnings, GDP and price, that is if
price will follow earnings.

6.3.3 Relative valuation in the JP data The superimposed JP data are displayed in
Figures 16a–c. Figure 16a overlays Figures 8a and 8b, representing the mapped TOPIX price
and earnings, respectively. Figure 16b, on the other hand, superimposes the mapped price on
the mapped JP GDP in Figure 8c. From the perspective of relative valuation not much can be
concluded, as there seems to be no pattern established in the mapped price.

Figure 16c lays the mapped I/B/E/S expected earnings of the TOPIX on top of the mapped
JP GDP. There is similarity in the patterns here, although the earnings data converge less tightly
and, as already discussed in Section 4.2, they do appear to exhibit some sign of a structural shift,
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Figure 16a: Superposition of Figures 8a and 8b for the TOPIX mapped price and earnings. The
nature of the price prevents any objective assessment of its relative valuation with respect to
earnings
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Figure 16b: Superposition of Figures 8a and 8c for the TOPIX mapped price and JP
GDP. Once again, as in Figure 16a, the nature of the price prevents any objective
assessment of its relative valuation with respect to the GDP
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Figure 16c: Superposition of Figures 8b and 8c for the TOPIX mapped earnings and JP
GDP

which is absent from the GDP. In terms of relative valuation between the TOPIX earnings and
the JP GDP, however, it could be concurred that the two are currently, within the present regime
of low interest rates, reasonably close to each other and, hence, the former can be considered to
be a fair reflection of the latter.
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7 Summary and conclusions
An objective and, hopefully, practical approach to relative valuation of an equity price index
has been proposed. The method, which entails a simple mapping, enables one to (1) objectively
compare the nominal GDP, corporate earnings and equity index against one another, (2) pinpoint
outliers and structural shifts in the data and distinguish between the different regimes, (3) extract
an estimate of the GDP forecast for next year, given today’s interest rates and (4) obtain a
mathematically sound expression for calculating duration. Application of the new method to the
US, UK and JP markets and economies led to certain conclusions, some of which are listed below.

1. Fisher’s claim that the stock market, just before its dramatic crash in 1929, was not
overvalued is supported.

2. A historical, but detailed, assessment of US data, involving the S&P500 price and I/B/E/S
earnings forecast, as well as the US GDP, over the last 20 years clearly confirms the
existence of the 1990s price bubble in comparison to the earnings and the GDP, and its
subsequent collapse in 2001. The collapse brought down the price to fair value relative to
both earnings and GDP.

3. An assessment of the UK data, similar to the above, was also undertaken. Here, in contrast
to the S&P price data, the results point to the absence of any price bubble in the FTSE100.
The subsequent fall in the price, which nonetheless coincided with the collapse of the
S&P bubble, occurred as the FTSE100 aggregated earnings underwent a structural shift.
A disparate line in Figures 7b, 15a and 15b clearly marks this shift.

4. The situation in JP is markedly different. As depicted in Figures 8a and 16a, b, the mapping
transformation has no impact whatsoever on the TOPIX price. In this case, the unmapped
price undergoes no change in pattern when subjected to the transformation defined in
Equation 3.6. This potentially means that the effect that interest rates or bond yields have
on the S&P500 and FTSE100 price indices are totally absent here. As a result, the policy
of varying interest rates to manipulate the equity price index does not work in JP under
the present circumstances.
In contrast, the TOPIX earnings and the JP GDP acquire well-defined patterns under the
proposed coordinate transformation. A superposition of the two indicates that currently
they are both fairly valued relative to each other.

All said, the new model does appear to have some potential as a relative valuation tool and,
thereby, might be worth developing further. This could well involve (1) applications to other
major equity indices that lie within the same jurisdictions covered here, (2) applications to other
jurisdictions and, finally, (3) delving deeper into the other possible uses that were briefly mentioned
here—namely, extracting the expected GDP and calculating the duration.

FOOTNOTES & REFERENCES

1. I express these views as an individual, not as representative of companies with which I am
connected. E-mail: ruben.cohen@citigroup.com Phone: +44(0)207 986 4645 Contact
address: Citigroup, London E14 5LB, UK
2. This is also known as the dividend discount model.
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3. Note that this is also the return on equity (ROE), which is more an identity rather than a
valuation tool.
4. Some might debate here that the DCF or ROE relationship in Equation 2.3 must contain
a growth term for the earnings, analogous to the dividend-growth term in Gordon’s Growth
Model. The argument against including such a term, however, relies on the classical relationship
between the plowback ratio and equity growth. The relation, according to literature (see,
e.g., Brealey and Myers 1996), as well as intuition, implies that Ef − δf = �S, where �S is
the growth in equity. Dividing both sides of this by the equity, S, leads to an equality between
Equations 2.1 and 2.3. This equality first suggests that the total rate of return is the same as
the ROE and, second, it reconciles the income statement with the balance sheet. Inclusion of
any growth term in Equation 2.3 would, otherwise, produce something inconsistent with the
plowback relation provided above.
5. The notion of the risk-free rate is also surrounded by controversy, especially in the empirical
literature. Although there is little argument that this number should be based on a government-
issued security, questions abound as to what maturity it should take. Another problem, which
is more fundamental in nature, addresses the ‘riskiness’ of the risk-free rate—that is how
could government securities be considered risk free when they are, as with any other type of
security, volatile and impossible to predict.
6. This, obviously, presents an idealised scenario, but it will be relaxed later as the relative
valuation model is developed.
7. Which is especially valid in the absence of volatility.
8. Based on this, therefore, firms pay and/or investors demand dividends because of the
uncertainties inherent in the market. Take away these uncertainties—i.e. as per Propositions 1
and 2—and the dividend yield will disappear altogether from the fundamental relationships,
Equations 2.1 and 2.2.
9. Mappings and/or coordinate transformations, whose principal objective is to condense
theoretical and empirical data into more manageable formats, have, for nearly a century,
played a central role in the field of fluid mechanics. Although a few successful attempts have
been made so far to apply this technique to economics (see, for instance, de Jong 1967
and Cohen 1998), as of yet, and as far as we are aware, very few endeavours, if any, have been
made to incorporate it into finance.
10. Although materially different in approach from the classical ‘dimensional analysis’
described in de Jong (1967) and Cohen (1998), among others, the fundamental purpose
of the coordinate transformation introduced here remains essentially the same.
11. The DCF model converges with the dividend discount model after 1950 (refer to Cohen
2002).
12. Note the similarity between Equations 3.7b and 2.3, as they are both based on the
DCF model.
13. Price and earnings data from Shiller (http://www.econ.yale.edu/shiller/
data/ie data.htm). Interest rate data from the Fed website (http://
www.federalreserve.gov/releases/h15/data/m/tcm10y.txt).
14. As discussed in Section 3.2.2, and as it will also be shown in a later section, the choice
of bond maturity does not matter.
15. The earnings data used here are actual, rather than the I/B/E/S forecasts. Therefore, VE
was in this case computed the same way as VG, where the one-year forward is substituted for
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today’s forecast of one-year ahead—i.e. E(t + 1) used for Ef (t) (refer, for instance, to Table 1
for the method of calculation of VG(t)).
16. Since the JP GDP is all one regime, then Figure 9c contains all the time frame included in
Figure 8c.
17. Given that today is Q1 2004.
18. The need for this arises from the scale differential between the GDP and the aggregated
index earnings.
19. More detailed, quarterly data will be shown later to clearly capture the 1990s bubble and
its collapse.
20. This, therefore, is consistent with Fisher’s claim and all the subsequent works that
support it.
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What the Spreadsheet
Said to the Database,
Just Before the
Regulator Shut Down
the Trading Floor. . .
Brian Sentance

W
hat is the world’s most popular trading system? Infinity? No. Front? No. Ima-
gine? Think again. Sophis? Non. Open Bloomberg then? Not even warm!

The most popular trading system in the world, unchallenged in its domi-
nance, is Microsoft Excel.

Billions of dollars are traded and hedged worldwide using the humble
spreadsheet. It is a scary thought that the stability of the derivatives markets, not to men-
tion the security of my retirement and yours, might depend upon simple spreadsheet formu-
las. ‘A1 = B1 ∗ C1’ and its variants probably deserve a lot more attention than we currently
afford them.

Why is the spreadsheet so popular in derivatives markets? The fundamental answer is that
market conditions and trading ideas change on a second-by-second basis. No software system,
with the possible exception of the spreadsheet, has yet been designed that can deal with such rapid
change in requirements. Years can be spent (and indeed are being spent) designing the perfect
trading system, a perfect trading system that will be obsolete from the moment its design, let
alone its delivery, is complete.

In a perfect world, new derivative products would be designed, tested and brought to market
in hours or minutes, maximising profit margins and market share for the institution that gets them
out first. A new product would have its risks understood and be fully integrated with all core risk
management systems and processes.
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The reality is different. New derivative products are, by their very nature, innovative and as
a result less than well understood. A new product may be defined by complex behaviours and
require complex data structures to support its pricing and risk management. This complexity often
makes new product types difficult to integrate into core trading and risk management systems from
both a technical and business process perspective.

As a result, it is relatively common for trading desks to bring a new derivatives product to
market using only spreadsheets to price, hedge and manage it. Business users, without the need
for extensive systems knowledge, can easily and quickly pull together in a spreadsheet complex
instrument data, real-time and historic prices and positional data. And when they change their
minds, they can change their spreadsheets to suit. Profit margins, market share and bonuses are
up and everyone is happy. Well, not quite everyone.

Risk managers, product control, compliance and IT staff are usually not happy with the exten-
sive use of trader spreadsheets (some traders would say that they are never happy, but that is a
separate debate for another day!). Risk managers are understandably concerned that it is the traders
themselves who mark the fair market value of the very trades on which their bonuses depend.

Additionally, it may be that only one or two key individuals have been involved in the design
and testing of the pricing model for the product. If so, how can the institution really be sure
the product has been thoroughly stress-tested? Besides, risk cannot be accurately assessed at an
enterprise or even portfolio level since these new instrument types cannot be integrated into core
risk management systems quickly enough.

IT staff are concerned that spreadsheets are difficult to support, with undocumented logic and
multiple copies of the same spreadsheet to track down. They may be concerned that the trading
desk will blame them if the risk numbers cannot be produced due to a (technically) corrupt
spreadsheet. IT would also like the traders to use fewer spreadsheets and more of the systems
they have spent many man-months developing, often systems that traders themselves requested
in the first place.

So, in summary, we are faced with an unhealthy triangle of frustration at some financial insti-
tutions. Risk managers are frustrated with ‘out-of-system’ instrument trades, traders are frustrated
with long system integration times for new instruments and IT are trying to make sense of all of
this against a background of ever-changing business requirements.

The problems outlined above would be of passing importance for some financial institutions
if it wasn’t for the part of the regulator. Regulation can translate the above frustrations into hard
cash, at which point everyone sits up and takes notice.

Without consistency of data, model risk, control over marks submitted and incomplete risk
reports, regulators are not happy. At best, they may slow down CAD approval to address these
issues. They may increase regulatory capital as a result of poor derivatives management, increasing
both direct interest costs on capital and indirect business opportunity costs. At worst, regulators can
raise regulatory capital requirements so high as to undermine the whole viability of the business.

So how do we solve the problem? For the moment I would suggest that what is needed is
to maintain all the flexibility of the spreadsheet without incurring the costs and threats for risk
management and IT. Traders could continue to implement complex calculation and data logic but
with transparency and simple availability for all interested parties.

A number of companies, my own included, are making progress in this direction. Many
institutions already make use of Microsoft Excel as a calculation server for complex products.
However, this has its limitations, since Excel is not currently designed for scalable and reliable
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server deployment. Due to client interest, I understand that Microsoft itself is considering the
development of a server deployable version of Excel.

Given some of the limitations of the relational data model in supporting array and time-aware
data, the introduction of a native XML data type within certain RDBMS will ease the problems
associated with ever-changing data requirements for new derivative products.

There are also products aimed specifically at translating existing Excel business logic from
spreadsheets into another, more robust form. Of recent note is the approach taken by Savvysoft
and its resulting trademark dispute with Microsoft over Savvysoft’s TurboExcel product.

At my own company, Xenomorph, we have recently introduced a spreadsheet object that is
a native data type within our TimeScape data management software. This spreadsheet-meets-
database approach enables traders to carry on designing spreadsheet logic that can be centrally
stored, administered and accessed by anyone who is permissioned to do so.

In summary, I believe that spreadsheet data management within the derivatives and wider finan-
cial markets is a major issue, and one that deserves everyone’s attention due to the opportunities,
costs and risks involved.

So what did the spreadsheet say to the database, just before the regulator shut down the trading
floor? At such a late stage in the process, my guess would be a dialog box saying ‘Microsoft
Excel is currently unable to respond’. . .
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Emotionomics: Ask
Marilyn and Win a Car
Henriette Prast

Every now and then, the Monty Hall problem pops up. Whether in fiction, in job
interviews or in academic publications, the problem continues to fascinate those who
stumble upon it.

I
n the 1960s, Monty Hall was a host in the American game show ‘Let’s Make A Deal’. The
final contestant in the show could win a car as a prize. The host showed the candidate three
doors. Behind one of the doors was a car, behind the other two a goat. The candidate had to
pick a door. After the candidate had chosen a door, but before it was opened, Monty Hall
used to open one of the other doors, with a goat behind it. He then offered the candidate

the opportunity to change his mind and switch doors. Most candidates did not switch.
In 1990, a reader of Parade magazine wrote a letter to Marilyn vos Savant, ‘the person

with the highest IQ in the world’, who has a column called Ask Marilyn in which she answers
mathematics questions sent in by readers. The reader asked Marilyn whether candidates of the
Monty Hall show should switch. Marilyn said they should, because that would increase their
chances of winning a car, from one-third to two-thirds.

But many readers of Parade disagreed with Marilyn, and were of the opinion that it did
not make a difference whether the candidate changed doors, as they believed the chances of
winning a car were fifty-fifty between switching and not switching. Among those readers were
mathematicians with a PhD such as Robert Sachs, PhD from George Mason University, who
wrote to Marilyn: ‘I am very concerned with the general public’s lack of mathematical skills.
Please help by confessing your error’, and E. Ray Bobo, PhD from Georgetown University, who
wrote: ‘How many irate mathematicians are needed to get you to change your mind?’

In 2003, 15-year-old Christopher Boone, the main character of the moving and highly recom-
mended novel The Curious Incident of the Dog in the Nightime,1 explains to the readers of his
diary why Marilyn vos Savant is right and all those PhDs were wrong. He does so with the help
of maths, and with the following scheme:

Door X = goat

Door Y = goat

Door Z = car
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Suppose you choose door X. Monty opens door Y, and if you switch you win a car.
Suppose you choose door Y. Monty opens door X, and if you switch you win a car.
Suppose you choose door Z. Monty opens door X or Y, and if you switch you win a goat.
Hence the chances of winning a car are one-third if you stick to your first choice and two-thirds

if you switch.
As Timothy Crack reports in Heard on the Street: Quantitative Questions for Wall Street

Traders, Wall Street firms often use the Monty Hall problem to assess job candidates.2 In academic
research, the problem is used in experiments to study individual decision making under risk. Some
might argue that when in a television show people have only little time to decide and are most
likely very nervous. However, from the experimental research it turns out that even when in a
tranquil setting, and where there is less at stake than a car, people turn out to behave just like the
Monty Hall contestants. For example, Benjamin Friedman (1998), in a series of experiments with
individual decision making under risk along the lines of the Monty Hall problem, finds an average
switching rate of a poor 30%, implying that a majority of the subjects in his experiment, just like
the contestants in ‘Let’s Make A Deal’, did forgo the possibility to double their expected return.3

In a recent paper, Brian Kluger and Steve Wyatt use the Monty Hall problem to detect prob-
ability judgment errors in an experimental investment context.4 The main purpose of their study
is to see whether the Monty Hall type individual cognitive errors do or do not translate into price
and allocation inefficiencies at the aggregate level.

The test was a market experiment, with participants being endowed with three certificates and
being able to trade by taking part in a second-price sealed bid auction, followed by an oral double
auction. The market experiment consisted of nine steps in each session, and each session consists
of 12 trials. It was conducted by 12 different cohorts of six participants, and was structured as
follows (see Box 1).

In the market experiment, the expected return of the convertible asset is 67 USE cents and
that of the non-convertible asset is 33 USE cents. Hence the efficient price ratio should equal 2.
However, this is not what Kluger and Wyatt find.
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Box 1: Sequence of events for a trial of the market.

In those cohorts where all subjects had made judgment errors in the individual experiments,
the prices in the subsequent market experiment did reflect this error. Many subjects did not make
optimal use of their right to converse assets. Still, there is hope for clever traders. For in cohorts
in which at least two rational traders were present—subjects who had not made a single error in
the individual experiment assets prices were efficient.

The question whether irrational behavior of individual market participants may lead to inef-
ficiency of the market as a whole is considered as one of the main challenges to behavioral
finance.5 The cognitive bias underlying the Monty Hall problem has its origins purely in limited
computational capabilities. As long as some traders are smart enough not to make these mistakes,
the bias does not show up in the aggregate, and prices are efficient. This is why the Monty bias
is unlikely to appear in large, competitive markets. In this respect the effects of the bias differ
from that of other cognitive biases detected in the behavioral finance literature, for example those
that originate in preferences and expectations. Sometimes the arbitrage required to compensate
for price inefficiencies is simply too costly and risky. For example, in some circumstances the
irrationality of the participants in financial markets may increase. If the rational arbitrageur buys
undervalued stocks, but market participants grow even more pessimistic, he will incur a loss, no
matter how right he may be about fundamentals. This is the well-known ‘noise trader’ risk and
even Marilyn vos Savant cannot get that out of the way.
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FOOTNOTES

1. The Times: Brilliantly inventive. . .not simply the most original novel in years. . .also one of
the best; The Financial Times: ‘. . .extraordinarily moving, often blackly funny. . . ’; TES: ‘A stroke
of genius.’
2. Every year sees an update of the questions used. The most recent version is published
by the Global-Investor Bookshop, 43 Chapel Street, Petersfield, Hampshire, GU32 3DY, UK;
bookshop@global-investor.com
3. Friedman, D. (1998) Monty Hall’s three doors: Construction and destruction of a choice
anomaly, American Economic Review, 88, 933–946.
4. Kluger, B. D. and Wyatt, S. B. (2004) Are Judgment Errors reflected in market prices and
allocations? Experimental evidence based on the Monty Hall problem, The Journal of Finance,
Vol LIX (3), June, pp. 969–997.
5. See Prast, H. M. (2004) Psychology in Financial Markets: an Introduction to Behavioural
Finance, Series Financial Monetary Studies, NIBE-SVV publishers, Amsterdam, May 2004, ISBN
90 5516 206 X.
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Risk: The Ugly History
Aaron Brown∗

T
he mathematical study of risk began in 1654 with a famous exchange of letters between
Pierre de Fermat and Blaise Pascal. If you like you can push the date back to Isaac
Newton in 1610, Gerolamo Cardano in 1525 or Luca Pacioli in 1458, but it is still
remarkably late considering that gambling is a universal human activity far older than
history. Why didn’t some earlier mathematician consider the problem? Why didn’t

some earlier gambler publish some useful inductions from experience?
The usual explanation is that philosophical and theological obstacles hindered development.

But this won’t convince anyone trained in finance. The more society discouraged rational
approaches to gambling, the greater the rewards to someone who mastered a basic principle
or two. We know people were willing to exercise ingenuity to gain a gambling advantage, ancient
loaded dice have been excavated. We know people were willing to study the subject, dicing
schools and guilds existed in medieval Europe. We know many early mathematicians needed
money and used their skill to get it. Two thousand six hundred years ago, Thales of Miletus, the
first mathematician known by name, used a complicated analysis to make a fortune by cornering
the olive press market. A small fraction of that effort would have provided a lifetime income
from gambling.

After Fermat–Pascal
The mystery does not end in 1654. Fermat and Pascal argued over the probability of getting three
or more heads in four flips of a fair coin. Compare that to the level of Fermat’s number theory or
Pascal’s projective geometry—anyone with high school algebra can easily solve the probability
question in their heads today, while the other work remains challenging to college mathematics
majors. After 1654, it took 150 years to derive any results not regarded as trivial today, and
150 years after that to get a reasonably consistent mathematical theory. As late as the beginning
of the twentieth century, elementary errors like Bertrand’s Paradox were unresolved, and today
simple questions like the Necktie Paradox or the definition of a random number do not have fully
satisfactory answers. When Ed Thorp figured out how to beat casino blackjack in the 1960s, many

∗ I would like to thank Paul Wilmott, Deborah Pastor and Dan Tudball for helpful comments and suggestions.
Contact address: Morgan Stanley, 750 7th Avenue, 11th Floor, New York, NY 10019.
E-mail: AC.Brown@MorganStanley.com
This article represents the personal opinion of the author and does not necessarily reflect the views of Morgan Stanley or
any other entity.
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mathematically sophisticated people dismissed the work on the grounds that it was impossible to
gain an advantage by varying the bet in a game where the average odds are against you.

It’s true that we’ve had a mathematically rigorous foundation for probability since the 1930s,
and not one but four consistent and sophisticated ways to link mathematical probability to risk
(by Von Neumann, Arrow-Debreu, Savage and Shannon). But this work does not correspond well
with the actual risk faced by humans. In 1921, Frank Knight distinguished between ‘risk’ and
‘uncertainty’. With some oversimplification, he put everything modeled by probability theory in
‘risk’ and everything people wanted to know about for practical decision-making in ‘uncertainty’.
In 1972 Daniel Kahneman and Amos Tversky began a field of study that has demonstrated the
enormous gap between mathematical and behavioral concepts of risk.

I cannot think of any field of study so basic to human survival that started so late, progressed so
slowly or is in such unsatisfactory shape today. The problem is not only theoretical. Simple errors
in risk calculations routinely cause large disasters. Individuals clearly mismanage risk according
to any reasonable theory. Introduction to statistics is frequently the most unpopular course in the
catalog. Elementary statistical principles are commonly ignored in law, which should be almost
entirely statistical, and statistical expert witnesses can be found for either side of any case.

Linguistic view
The word ‘risk’ entered the English language in 1661. Although it comes from French and Italian,
its origin and earlier history are unknown. Words that are related today had entirely different
meanings. ‘Random’ meant fast to Shakespeare, only later acquiring a connotation of careless,
then haphazard, then unpredictable. The root of ‘danger’ is the Latin ‘dominus’ meaning ‘master’.
The word evolved to mean ‘under control of’ then later ‘liable to a master’. The transfer from the
idea of liability or responsibility to a specific person to general possibility of harm came later.
‘Peril’ meant to try something.

Other risk-related words had specific gambling meanings rather than uncertainty in general.
‘Hazard’ comes from the Arabic for ‘dice’. ‘Chance’ meant ‘falling of the dice’.

Of course, the fact that modern words for risk did not have their contemporary meanings
doesn’t mean there weren’t words for risk in English before the seventeenth century. ‘Pleoh’ is
the Old English word usually translated as ‘danger’, but it has the sense of ‘circumstance’ like
the modern ‘plight’.

Going back further, the most familiar passage referring to risk in the Bible is Ecclesiastes 9:11,
‘. . .the race is not to the swift, nor the battle to the strong . . . but time and chance happeneth to
them all’ in the King James translation. However the Hebrew word does not imply randomness
but simple circumstance. It’s more ‘you win some, you lose some’ than ‘wins and losses are
uncaused’. When the Philistines observe the path taken by an oxcart to see if their misfortunes
are caused by the Hebrew God or by ‘chance’ (again King James translation), the Hebrew word
only means ‘some other cause’. There is no ancient source in the Jewish/Christian/Islamic tradition
that clearly refers to the modern sense of risk. However, it’s interesting that by 1611 the King
James translators used a gambling metaphor to mean ‘of unspecified or unknown cause’. This
appears to be a concept born in the Reformation. It could not be described in existing languages,
instead people applied gambling words beyond the gaming table, and gave gambling connotations
to words that did not have them earlier.

To see the distinction, consider the following examples from different games:

• (Chess) Your queen is in danger!
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• (Roulette) A martingale strategy of betting $1 on red and doubling the bet after every
loss has the danger that black will come up enough times in a row that doubling your
bet would exceed the house limit.

• (Poker) Your only danger is that your opponent has a full house.

In chess there is no concealed information, no randomness. ‘Danger’ here means circumstance. It
would be pointless to gather historical statistics about how often queens are lost in chess games,
or to buy an insurance policy on your queen. An appropriate response to this statement is to
consider the ways the queen might be lost, and either prevent them or make sure you have an
offsetting gain.

The roulette example is closest to the modern understanding of financial risk. There is no
concealed information. For most purposes randomness is a useful model for the sequence of red
and black. Historical statistics are certainly relevant here, and an insurance policy against a long
sequence of blacks could offset the danger. The appropriate response to this kind of danger is to
consider the probability and consequence of the bad event, and weigh that in an overall decision.

In poker after all the cards are dealt, there is no randomness, only concealed information.
This is an important intermediate case between the first two examples. For the purposes of one
hand, this is the chess situation. Your opponent either has the full house or she doesn’t. But for
playing a long series of hands, you have to consider the probabilities. You even have to consider
the probabilities of different hands you might have, conditional on the play of the hand up to
this point. You know what you have, but your opponent’s actions will be influenced by what you
might have. This gets us into the realm of game theory, where probability and strategy are mixed.

Now suppose I say ‘he’s in danger of getting fired’, or ‘having a heart attack’ or ‘being
audited’. It’s not clear whether I mean the chess, roulette or poker sense of ‘danger’, or something
intermediate. Of course, it’s even harder to interpret historical sources. The only two senses that
are clearly more than 400 years old are the chess sense and the roulette sense specifically restricted
to gambling games.

Risk and the law
The Code of Hammurabi seems to have no concept of accident or random event. For example,
law 120 concerns ‘If any one store corn for safe keeping in another person’s house. . .’ It treats
three cases identically: if ‘any harm happen to the corn in storage’, ‘if the owner of the house
open the granary and take some of the corn’, or if the owner of the house ‘deny that the corn
was stored in his house’. The penalty is the same for accidental loss, theft and fraud. The laws
for physicians prescribe penalties if a patient dies without consideration of whether the physician
was responsible. In certain cases, an accused is thrown into the river. The details for this are
not known, but it is clear that people sometimes drowned and sometimes survived. In a more
severe variant, the accused was tied up first, and rarely survived. In either case, the result is not
viewed as luck, because if the accused survived, he or she was assumed innocent and the accuser
was punished.

Hammurabi is careful to excuse liability for acts of God, and the distinction lives on in
modern insurance policies. The related concept force majeure was also carved in stone in 1800
bce, Hammurabi excused carriers whose goods were seized by war enemies. So, the Code assumes
someone (maybe a god or a rival king) is responsible for everything, nothing is random, there
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is a legal consequence for every bad result (see the charming Australian comedy The Man Who
Sued God for the obvious implication). Modern lawyers are not much friendlier to statistics than
the ancient King of Babylon.

There are two tantalizing exceptions to the dearth of evidence for modern risk before 1650.
The first is from the Hindu holy epic Mahabharata, in a section probably composed about 1700
years ago. The poem contains many accounts of people ruined by gambling, invariably because
(a) they are obsessed and cannot stop playing despite pleas from friends and (b) the opponent
cheats. One such victim, Nala, takes up service with a neighboring king. That king demonstrates
his wisdom by counting the leaves and fruits on a large tree through examining a single twig.
Nala offers to trade lessons in horsemanship for the secret to this feat. The king agrees, and tells
Nala the secret will show him how to win at dice as well. Nala then goes home and wins back
his kingdom. This appears not only to show a scientific knowledge of probability useful for dice
playing, but connects that skill to reasoning from a sample. However, I know of no other evidence
for ancient knowledge of either one.

The second exception also explains the term ‘premium’ for insurance payments and option
prices. ‘Bottomry’ loans date back at least to the Phoenicians 3000 years ago. They are loans
secured by a ship, with the loan forgiven if the ship is lost. Bottomry lenders were granted
exemptions from usury laws and allowed to charge a premium to the legal rate of interest. The
justification flirts with the idea of expected value, it is acknowledged that the interest on loans for
successful voyages must cover the losses on loans for unsuccessful ones. Legal cases are preserved
in which the amount of the premium is challenged, but to my knowledge the actual frequency of
losses did not enter into the argument. The lender had to prove that he was exposed to significant
maritime risk, but did not have to quantify that risk nor relate it to the premium charged.

A closer look at Fermat–Pascal
Fermat’s solution to the interrupted game problem was a direct application of mathematical logic
to law. Read carefully, it has nothing to do with probability in general. After some analysis the
problem comes down to: how to divide a stake in an interrupted game of fair coin flipping, in
which A needed m heads to win and B needed n tails first.

Using modern notation, call A(m, n) A’s proportion of the stake. Fermat reasoned that
A(k, k) = 1

2 for any k, because both players are in identical positions. Further, A(m, n) = 1
2 [A(m −

1, n) + A(m, n − 1)]. That allocation makes the next coin flip a simple wager of 1
2 [A(m − 1, n) −

A(m, n − 1)], which stake should be divided equally according to the first principle. Pascal pro-
vided the triangle (which he did not invent) to calculate these values quickly. Note, however, that
the solution need not be the expected value of the outcome, in fact the coin probabilities are never
used. All you need is a principle for dividing the stake when both parties are in the same situation
and reductio (one of Fermat’s signature techniques in number theory) provides the answer. This
is much more similar to the binary version of the Black–Scholes argument than to the binomial
distribution in statistics. It applies more generally than the expected value approach.

Pascal then made a fateful error. He confused the equity argument of Fermat with a frequentist
argument, essentially that the stake should be divided by Monte Carlo simulation—completing
the game many times and dividing the stake in proportion to the number of each player’s wins.
These are only the same if (a) the outcomes are equally probable (i.e. the coin is fair) and (b) you
can rely on the principle that stakes should be divided equally when a tie game is interrupted (this
does not work if the stake cannot be divided, and may not be the proper resolution in other cases).
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To highlight the difference between these approaches, consider the modern rules for interrupted
major league baseball innings (usually as a result of rain). If a game is stopped at the end of an
inning, that is, if both teams have had the same number of opportunities, the game is awarded to
the team with more runs.1 The problem arises if the game is stopped mid-inning, when one team
(the visiting team) has had more opportunities than the other (the home team).

Pascal’s frequentist approach would consider the situation at the interruption and compute the
probabilities of different outcomes for the remainder of the inning. Each team would be awarded
a share of the win based on its probability of being ahead had the game been completed. The
probabilities could be estimated from historical data. For example, if the score is tied in the sixth
inning, and the home team has a man on first with one out, then it wins with probability 0.561,
based on analysis of completed games. So we could award the home team 0.561 wins and the
visiting team 0.439.

The actual rule has Fermatian spirit. There are no splits win, nor any concept of awarding
based on expected value at time of interruption. If the home team is ahead, it wins the game.
If the visiting team was ahead at the beginning of the inning, the final score stands. In all other
cases the game is not awarded to either team (depending on circumstances, it will be ignored, or
completed or replayed on another day).

These rules are confusing to baseball fans and are inconsistent with expectation. A team can
get credit for a win in a game it had less than an even chance of winning, and not get credit for
a win in a game it was almost certain of winning. The home team has a probabilistic advantage.
The rule is symmetrical if either team is ahead at the beginning of the inning, but if the game is
tied at that point, the home team can get a win but the visiting team cannot. Also, it’s easier for
the home team to win if the game is stopped in the fifth inning.

But there is a clear argument from justice. We know that it is fair to award the game to the
team that is ahead at the end of an inning. We extend the principle to say a team is entitled to a
win if it is ahead at the end of an inning and when the game is stopped. The visiting team wins if
it is ahead at the end of the last complete inning, and also at the time play is stopped. The home
team wins if it is ahead when play is stopped, because that means it would necessarily be ahead
if the partial inning were completed.

There is an inconsistency here: the visiting team’s argument is based on being ahead at the
start of the partial inning, while the home team’s case is based on being ahead at the end of the
partial inning. Logically, it’s possible for one team to be ahead at the beginning and the other at
the end, meaning that it’s fair to award the game to both teams. The inconsistency is ignored, the
visiting team gets the win, even if it’s possible the home team would have gone ahead if it had
been allowed to complete the partial inning. The home team gets the win even if the visiting team
was ahead at the beginning of the inning. This, plus the fact that the rule often fails to award the
win to either team, makes it unsatisfactory as a quantitative model. It is statistically unfair. But
many legal principles are based on this type of reasoning.

For the next two centuries, probability theory was hobbled by the supposed need to break prob-
lems down into equiprobable events for rigor. Practical statisticians used frequentist approaches
instead, but without any rigorous foundation. That would require measure theory in the twenti-
eth century, which provided the foundation but at the price of assumptions inapplicable to any
real problems outside quantum physics. Bayesian statisticians attempted to avoid the dilemma by
positing a subjective prior distribution, which ensures consistency but defines probability only
subjectively. Nonparametric statistics also avoid the dilemma, but sacrifices a lot of power. The
future of practical statistics probably lies in some combination of frequentism and nonparametric
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methods, something like the bootstrap, although so far no one has even figured out how to do
good bootstrap regression analysis.

As a result of this confusion of theoretical approach, conventional statistics gets the world back-
ward. It starts by introducing randomness, through the abstraction of a random variable generated
by a distribution. The problem isn’t that the world is predictable and we need a mechanism to
introduce randomness; it’s that the world is unpredictable and we need mathematics to make pre-
dictions. We have the data, and want to know the probability that a hypothesis is true, or that some
future event will happen. Instead, statistics tells us to form a ‘null hypothesis’, generally the oppo-
site of what we want to know, and pretend the data are random (although we have already made
the measurements), then compute the probability of getting the data under the null hypothesis. The
answer is not the probability or prediction we want, but something called a ‘significance’ which is
hard to define and obeys no consistency rules. The entire process is impossibly abstract, irritates
students to no end, takes great skill to perform properly and is subject to well-known paradoxes.

Despite these criticisms, probability theory works extremely well in analyzing gambling
games (for which the assumption of introduced randomness is literally true) and for controlled
experiments (experiments that have been converted to gambling games for the convenience of
statisticians). It works for quantum physics, although a lot of people think it shouldn’t. Its record
in other fields is mixed. Smart, experienced, honest people, trained in probability theory and
statistical practice, can use mathematics to extract truth from an uncertain world. Certain tools
developed for specialized problems work reasonably well most of the time. But these qualifications
aside, most applications of statistics to uncontrolled situations are problematic.

The breakthrough
For 318 years, there were no statistical methods that combined rigor and practicality. The break-
through came in 1972, with the publication of the Black-Scholes model. This led to modern
derivative pricing which distinguishes between risk–neutral and simulation pricing. The first is
firmly in the spirit of Fermat. It requires no assumptions about probabilities, no historical market
data and no projections of future market behavior. However, it does require complete market data,
which restricts its use to some simple (but important) special cases.

Monte Carlo simulation is Pascal’s frequentist approach. It can price anything, but only with
a probability model and the assumption that price equals risk-adjusted expected value. Many
popular methods combine these two approaches, and in general they serve to verify each other.
We only really trust prices for which we can get reasonably tight value ranges by both analytic
methods and historical data.

Finance is the first field to recognize the difference explicitly and accept both answers. Unifi-
cation is still an important goal, but quantitative finance can make rapid progress in both theory
and practice without it. This progress holds the best hope for solving the problem and making the
history of risk handsome again. Once we’ve figured out how to price and risk manage everything,
then we can fix statistics and figure out the rest of the universe.

FOOTNOTE

1. More than four innings must have been played or it is declared ‘no game’ and doesn’t count
for either team.
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Finformatics: Thirst
for Hurst
Kent Osband

Why we have more to thank the Nile for than just an interesting delta.

H
ow does the risk of a trade change with the time T you hold it? When returns for
each moment are independent and identically distributed (i.i.d.), the answer is easy.
Variance will scale linearly with T , so the volatility will scale with

√
T . With only

a bit more effort we can show that skewness of i.i.d. sums shrinks according to
T −3/2 while the corresponding kurtosis shrinks with T −1.

That suggests a neat way of checking for serial independence. Calculate the volatility, skewness
and kurtosis over different holding periods and watch how they scale. Lo and behold we find that
the shorter the holding period, the less likely financial market returns are to scale like i.i.d sums.

Hurst exponents
It would be useful to have a single summary measure of how risk scales over time. Statisticians
found one in the work of Harold Edwin Hurst, a British civil servant posted to Cairo in 1906.
Hurst got interested in Nile flooding as this was crucial to Egyptian grain harvests. Studying
800 years of records, he noticed that high-flood Nile regimes tended to alternate with low-flood
regimes, each of them lasting for years at time. (Those of you who’ve read the Old Testament
should know that already.) To summarize his findings, he calculated a coefficient known today as
the Hurst exponent.

A Hurst exponent of H basically means that the standard deviation for a holding period T

scales with T H . Hurst exponents higher than 0.5 are said to describe ‘persistence’: high deviations
tend to be followed by low deviations and vice versa. Hurst exponents less than 0.5 are said to
describe ‘anti-persistence’: deviations tend to mean-revert. A Hurst exponent of 0.5 is a good sign
of independence.

While positive auto-correlation causes persistence and negative auto-correlation causes anti-
persistence, persistence can capture dependencies too subtle or complex to be summarized as
correlation. Consider, for example, Brownian motion stuck between two reflecting barriers (the
best financial analogue is a currency floating inside a fixed band). The probability of being
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constrained in the next instant is zero, so the Hurst exponent for short periods must asymptote to
1/2. However, in the long run the standard deviation is capped by the width of the band, so the
Hurst exponent must shrink to zero.

Now, Hurst didn’t actually calculate multi-period standard deviations. Rather he calculated a
related quantity known today as ‘rescaled range’ or ‘the R/S statistic’. To calculate it yourself:

• Divide up the whole period into subperiods of equal length T , preferably non-overlapping
to reduce correlation across measures.

• Remeasure each observation as a deviation from the sample mean, so as to mitigate the
impact of drift.

• Add the deviations cumulatively.

• Measure the range R as the difference between the cumulative high and the cumulative
low.

• Divide by the sample standard deviation S of the observations.

• Average over the various subperiods.

With independent observations, Hurst knew the R/S statistic should converge to T 1/2 times some
constant (I’m not sure Hurst knew the constant. Do you? Hint: Monte Carlo simulations show
it’s about 1.6). Instead he found the R/S statistic for the Nile was nearly proportional to T 0.7.

Highfalutin stuff
The R/S statistic has found favor with high-powered finance theorists despite its being relatively
easy to calculate. That’s because it exists even for non-Gaussian Levy distributions. Actually
that’s not quite true. Since none of those distributions have well-defined standard deviations you
can’t divide by S. And half of Levy distributions are too diffuse to have a well-defined mean—the
Cauchy distribution marks the divide—so they don’t have an expected range either. But the Levy
distributions that most theorists are interested in, marked by a tail parameter µ between 1 and 2,
do allow an expected range. Moreover, the Hurst exponent for such distributions is constant, with
H = 1/µ.

That’s not all. Recall that even ardent Levy distribution fans concede they have to truncate
them to fit the evidence for finite volatility. But truncation doesn’t impair the Hurst exponent at
short holding periods. Eventually the Hurst exponent for truncated Levy distributions recedes to
1/2, implying no dependence across long holding periods, but that’s what the empirical evidence
suggests too. So at first glance it appears as yet another vindication of Levy truncation.

Hurst exponents also are easy to match up with another phenomenon called fractional Brownian
motion. Indeed, fractional Brownian motion is defined as the continuous Gaussian process BH

with covariance between values at times t and s of t 1
2 (t2H + s2H − |t − s|2H ) for H , the Hurst

exponent. Sadly this is neither a Markov process nor a semimartingale and can’t be analyzed
using standard Ito stochastic calculus. You have to apply a new fractional stochastic calculus
that sprinkles in terms in σ 2t2H everywhere σ 2t appears in standard Ito, ultimately generating a
fractional Black–Scholes equation of the form:

∂V

∂t
+ Hσ 2t2H−1S2 ∂2V

∂S2
+ rS

∂V

∂S
− rD = 0
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Clearly this is a fascinating road to travel down, but you’ll have to do it without me as I promised
to feed my kids’ goldfish while they’re away. Just remember that to fit the data you’ll need to let
H recede to 1/2 over time and modify all your equations accordingly.

Simple regime-switching explanations
At first glance, regime-switching under uncertainty can explain persistence just as easily as it
explains fat tails. As long as the regime stays the same, the associated drift stays the same, and
investors’ beliefs will gravitate toward recognizing it. That’s persistence. Eventually the regime
will change, the drift will change, and investors’ beliefs will follow along. Given a sufficiently
long time period, regimes and beliefs will switch enough to wash persistence away.

To test this hypothesis, I will perform thousands of Monte Carlo simulations and estimate the
Hurst exponents. By running so many simulations I can avoid some of the problems that bedevil
Hurst exponent estimation in real life. It won’t avoid them all, though. We’ll need to make some
additional adjustments.

To begin with, we need to be careful about the starting point. For example, if the initial
regime is High, should I assume the aggregate market investor knows it (p0 = 1), the investor
is completely uncertain (p0 = 1/2), or that the starting belief p0 is drawn randomly from the
stationary distribution f ∗? The answer is, none of the above. What we want is the stationary
distribution g∗ of beliefs given that the initial regime is High. Let us assume High and Low regimes
are equally likely in equilibrium; i.e. λHL = λLH ≡ λ. Applying Bayes’ rule and substituting
previously derived results,

g∗(p) ≡ density(p|High) = density(p ∩ High)

probability(High)
= 2pf ∗(p)

∝ 1

p(1 − p)2
exp

(
− 2Q

p(1 − p)

)
for Q ≡ λ/S2

Figure 1 provides charts of g∗ versus p∗ for Q = 0.25 and Q = 0.05 respectively.

How to lie with rescaling
Here’s a more serious problem, discovered in the course of running simulations. The R/S statistic
can easily generate spurious evidence of persistence and anti-persistence. Indeed it has to if you
detrend every single sample by its own sample mean. That guarantees a detrended return of zero
for a one-period holding period; ergo a one-day rescaled range of zero. To generate a positive
rescaled range for longer holding periods, the logarithm must jump, not just scale smoothly with
the square root of time.

This effect is not just confined to the origin. At any holding period, detrending trims the
average range below the levels that would prevail for a genuinely zero drift series, since zero
expected drift doesn’t ordinarily mean no net price movement. But since the relative impact is
more pronounced for shorter series, the R/S statistic scales faster than the square root of time.

Moreover, the ideal R/S statistic should cover the encompass the full intra-day trading range,
not just the closing price. For long holding periods this hardly matters. For short periods it matters
a lot. This too shows up as spurious evidence for persistence.
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Figure 1: Charts of g∗ versus p∗
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Figure 2 is a chart in log-log space of the average R/S statistic for a purely random walk,
when all samples are individually detrended and the holding period stretches from 2 days to 4096
days. I found 500 samples for each holding period gave fairly robust averages, but calculated
2000 samples each for good measure.
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Figure 2: Over-detrended R/S for a random walk

The best linear fit indicates an average persistence of 0.61. A quadratic curve fits the data
even better: the R2 is 0.996. It suggests persistence is 0.9 at two days but shrinks to 0.5 or less
at very long horizons. And yet all the observations are independent by construction.

Several writers have noted that the evidence for persistence isn’t all it’s cracked up to be.
The demonstration above is an additional warning. If you’re using a range statistic to measure
persistence, detrend it only by the true mean or by the mean of a large aggregate of samples.
Otherwise your evidence is likely to be too undevious for its own good.

Simulation results

I set up a regime-switching model with annualized values of µH = −µL = −12%, σ = 8%,
r = 4%, and λ = 0.25. Seeding beliefs with a random draw from the appropriate conditionally
stationary distribution, I ran a Monte Carlo simulation for 4096 days of trading, or just over 16
years. Each day the model updated the regime, the random dividend, beliefs about the regime
and price. I then calculated the range for every power-of-two holding period; i.e. 1 day, 2 days,
4 days, and so on up to 4096 days.
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Again, that was the setup for one simulation. I ran 1000 such simulations and averaged the
ranges. That provided over 16 000 years of simulated daily financial data, a bit more than you are
likely to collect in practice.

As it turned out, I had to run the full set of simulations several times, to experiment with various
detrending techniques. The first set detrended each sample by its own sample mean, because I
didn’t initially realize the danger it posed. Not surprisingly I found a lot of persistence at the short
end. But after I saw the results for a pure random walk I realized this might be spurious. More
convincing was the evidence that persistence declined with holding period. The curve flattened
out for long holding periods much more for the regime-switching-under-uncertainty process than
for the pure random walk.

I then ran another 1000 simulations without detrending. Figure 3 is the chart in log-log space
of range versus holding period. The general shape is very similar to the shape created by excess
detrending. The main difference is that excess detrending concentrates most of its force at the
short tend, while regime switching has a more even impact.
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Figure 3: Range without detrending

In this example, the best linear fit has an R2 of 0.993 and implies a Hurst exponent of 0.58.
The best quadratic fit has an R2 of 0.9997, and implies the Hurst exponent declining from 0.78
to just under 0.5.

In other words, finformatics predicts both persistence and gradual decay of persistence as well
as any truncated Levy distribution. It also offers a plausible explanation while the Levy truncators
cannot. However, a kind of measurement error can also account for significant persistence and
decay of persistence. I am not sufficiently steeped in the evidence to gauge which explanation is
more important and by how much.
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TARNs: Models,
Valuation, Risk
Sensitivities
Vladimir V. Piterbarg∗

We study a new class of interest rate exotics, Targeted Redemption Notes, from the
financial modeling perspective. We discuss issues of model selection, develop meth-
ods and techniques for valuation, and present approaches for improving numerical
properties of risk sensitivities calculations.

1 Introduction
The market for exotic interest rate derivatives has long been dominated by callable Libor exotics.
Recently, however, there have been new developments. In addition to new flavors of callable
Libor exotics,1 completely different type of structured interest rate note, called TARN (Targeted
Redemption Note), has been introduced.

A comprehensive framework for modeling callable Libor exotics has been developed in a
number of papers (Piterbarg 2003, 2004a, 2004b). Unfortunately, many of the methods do not
directly apply to TARNs and need to be adapted or replaced. This chapter aims to accomplish
just that. We develop and present various methods for analyzing and pricing TARNs and, most
importantly, computing their risk sensitivities (Greeks) quickly and efficiently.

A forward Libor model is the workhorse of exotic interest rate modeling. Flexibility of its
volatility specification allows calibration to a wide range of market instruments, while controlling
forward evolution of the volatility structure. This flexibility comes at a price, as typically only
Monte Carlo methods are available for valuation. We start by discussing various variance reduction
methods available, and their applications to TARNs. We then proceed to analyze the volatility
structure dependence of TARNs in detail. This allows us to adapt a powerful ‘local projection’

∗I would like to thank Paul Cloke, Leif Andersen and Jesper Andreasen for valuable discussions and feedback.



154 THE BEST OF WILMOTT 2

method to the problem of TARN valuation. The method is based on calibrating a ‘local’, low-
dimensional, PDE-based model to the deal-specific volatility structure components of a ‘global’
forward Libor model. We show that TARNs are particularly well suited for the method. After
reviewing volatility smile dependence of TARNs, we present our ‘local’ model of choice. Finally,
we spend some time demonstrating how TARNs, despite being path-dependent, can be valued by
PDE methods.

2 Definitions
The interest rate exotics market, just like all other exotics markets, is driven by investors’ interest
in structured notes. A structured note works like a bond, where an investor gives a principal to
an issuer in return for a promised stream of coupons (that are linked to interest rates at the time
when the coupon is set), and a principal repayment at the end of the note.

Investors are primarily interested in receiving a rate of return that is as high as possible, as
well as in an opportunity to express a view on future directions of interest rates. A common way
to increase the coupon paid to an investor has been to make the note callable (Bermuda-style) by
the issuer. While offering an enhanced yield, this feature was not necessarily liked by investors
as they typically had no way of knowing when the note would be called.

A recent innovation, an invention of a Targeted Redemption Note, has solved this problem. In
a TARN, a structured coupon is paid to an investor. The total return, the sum of all coupons paid
to date, is kept track of. When the total return exceeds a pre-agreed target (hence the name of the
instrument) the note is terminated. No further coupons are paid, and the principal is returned to
the investor.

Issuers do not keep these complicated instruments on their books, and swap them with exotic
interest rate trading desks. The principal payment from investors is reinvested at the Libor rate.
Thus, from the point of view of the trading desk, a cancelable note looks like a callable Libor
exotic. A TARN then looks like an exotic swap that knocks out on the total sum of structured
coupons.

Let us define a TARN formally. We sacrifice some generality in the description of the contract
for the sake of simplicity, while retaining the features of the contract essential from the modeling
prospective.

A TARN is based on a tenor structure, a sequence of times spaced roughly equally apart,

0 = T0 < T1 < · · · < TN,

δi = Ti+1 − Ti.

We denote zero coupon discount bonds by P (t, T ) . Forward Libor rates are defined by

F (t, T , S) = P (t, T ) − P (t, S)

(S − T )P (t, S)
.

In particular, we define

Fn (t) = F (t, Tn, Tn+1) = P (t, Tn) − P (t, Tn+1)

δnP (t, Tn+1)
,
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n = 0, . . . , N − 1. The structured coupon is an inverse floating coupon2 based on the Libor rate.
With the strike s, it is defined as

Cn (t) = (s − 2Fn (t))+ ,

observed (fixed) at time Tn and paid at Tn+1. This is the coupon promised to an investor. In
return, a floating rate payment based on the Libor rate is made. The coupon fixed at time Tn is
only paid if the sum of structured coupons up to (and not including) time Tn is below a total
return R. Thus, the value of the TARN at time 0 from the investor’s viewpoint is given by

v = E0

(
N−1∑
n=1

B−1
Tn+1

× Xn (Tn) × χ {Qn < R}
)

,

Xn (t) = δn × (Cn (t) − Fn (t)) ,

Qn =
n−1∑
i=1

δiCi (Ti) ,

Q1 = 0, (2.1)

χ {A} =
{

1, if A,

0, if not A.

We note that a TARN typically pays some fixed coupons to an investor up front. We do not include
them into the contract description as they can be valued off an interest rate curve separately, as
they are known in advance.

Let us consider an example. A typical deal at the time of writing has TN = 10 years, δ = 1y,

s = 11.5% and R = 3%. Moreover, 11% (per annum) is paid to the investor up front in the first
year. The fixed coupon of 11% in the first year is clearly very high, well above anything available
from government bonds. Therein lies the main attraction for the investor.

TARNs are highly leveraged investments. This should be clear from the high up-front coupon
that a trading desk is willing to pay. Let us analyze this in a bit more detail. The investor clearly
wins if the deal knocks out quickly—he is left with the 14% return (11% up front plus 3% targeted
return), and is repaid his principal upon knockout. The deal knocks out on the first possible date
(T2) if C1 (T1) is 3% or above, or equivalently F1 (T1) is 4.25% or below. On the contrary, if
the rates go up (above 5.75%), and stay up there for 10 years, all coupons Cn become zero, the
investor receives nothing for 10 years but has to pay Libor (essentially, he forfeits interest on
the principal for 10 years). Figure 1 shows the (risk-neutral) probability of the deal being alive
after successive years. The deal stays alive for 10 years (bad for an investor) with about 25%
probability, and knocks out after the first two years (good for the investor) with 65% probability.
In other words, an investor makes decent money with 65% chance, and loses big with 25% chance
(it is awash with 10% chance). This again demonstrates the measure of leverage in TARNs. It is
not hard to see that the smaller the target return R, the higher the leverage.

3 Forward Libor models
The first model anyone should apply to a new type of an interest rate exotic, such as a TARN,
should be a flexible, fully calibrated (to the full swaption volatility ATM grid and, if possible,
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Figure 1: Probability that a TARN is not knocked out on and including given
year. Time to maturity 10 years, total promised rate of return 3%, strike 11.5%

volatility smiles as well), ‘global’ model such as a forward Libor model. Before enough experience
with a particular deal type is gained, this approach provides a measure of comfort by the fact
that all market information is calibrated to. Using a less flexible model such as the Hull–White
model requires one to choose what market volatility information to calibrate the model to. Such
judgement is very hard to make and defend. In addition, using a flexible model such as a forward
Libor model also allows one to control the dynamics of the volatility structure, something that
typically plays an important role in valuation of exotics. Again, ‘lesser’ models impose that
evolution upon the user, and more often than not it cannot be described as reasonable.

We start the definition of the model by specifying a probability space (�,F, P), together with
a sigma-algebra filtration {F (t)}∞t=0 .

Different flavors of forward Libor models are available. To avoid burdening this chapter with
unnecessary details, and yet to present relevant issues in sufficient generality, we choose to work
in the context of a skew-extended forward Libor model (Andersen and Andreasen 2000). The
skew-extended forward Libor model introduces a local volatility function φ (x) , independent of
time, that is applied to each of the Libor rates. Moreover, we choose to present our analysis for
a one-factor model that is based on the same tenor structure as the TARN in the previous section
(both restrictions are non-essential for our results). The dynamics (under the appropriate forward
measures) for each Fn is given by

dFn (t) = λn (t) φ (Fn (t)) dWTn+1 (t) , n = 1, . . . , N − 1, t ∈ [0, Tn] . (3.1)

A popular choice for φ (x) is a linear function

φ (x) = ax + b,
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resulting in a ‘displaced-diffusion’ type model. Another popular choice, a power function φ (x) =
xc defines a CEV-type model.

For convenience we define

Fn (t) = Fn (Tn) , t > Tn.

A special numeraire is usually chosen. We define a discrete money-market numeraire Bt by

BT0 = 1,

BTn+1 = BTn × (1 + δnFn (Tn)) , 1 ≤ n < N, (3.2)

Bt = P (t, Tn+1) BTn+1, t ∈ [Tn, Tn+1
]
.

The dynamics of all forward Libor rates under the same measure, the measure associated with
Bt , is given by

dFn (t) = λn (t) φ (Fn (t))

n∑
j=1

1{t<Tj }
δjφ

(
Fj (t)

)
1 + δjFj (t)

λj (t) dt + λn (t) φ (Fn (t)) dW (t) , (3.3)

n = 1, . . . , N − 1,

where dW is a Brownian motion under this measure, assumed to be P.

We note that the vector-valued process

F (t) = (F0 (t) , F1 (t) , . . . , FN−1 (t))

is Markov.
Algorithmically, pricing TARNs in a forward Libor model does not present major challenges.

As a purely path-dependent contract with no optimal exercise features, a Monte Carlo simulation
is straightforward. A TARN, however, has digital-type discontinuities (it knocks out). Simulation
error (by which we mean the standard deviation of the Monte Carlo estimate of the true price) is
higher for non-smooth payoffs. The problem of noise is especially severe for payoffs with digital-
type discontinuities. The noise in the simulated value can be controlled relatively successfully by
increasing the number of paths. Risk sensitivities, however, are a different story. The number of
paths required to get a reasonably accurate estimate of risk sensitivities of a payoff with digital
discontinuities is very high, and may make the application of forward Libor models impractical.
This is particularly a problem for interest rate derivatives as usually a large number of sensitivities
are required (the requirement to compute bucketed deltas, gammas and vegas can easily push the
required number of valuations for a full set of risk reports into hundreds).

Limitations of Monte Carlo methods for computing risk sensitivities have long been noted,
and various methods to alleviate them have been proposed. The book Monte Carlo Methods in
Financial Engineering by Paul Glasserman (2003) has a wealth of information on the subject. In
the next few sections we review some of them with a view towards an application to TARNs. We
start by quickly reviewing the methods that actually do not work that well.
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4 Pathwise and likelihood ratio differentiation
Methods for computing risk sensitivities in Monte Carlo that do not require separate simulations
for the ‘base’ and ‘bumped’ value have proven to be extremely successful in certain applications.
The methods are very effective for callable Libor exotics, see Piterbarg (2003). There are two
types of methods in this category. One is the pathwise differentiation method. In it, the payoff
of the underlying is differentiated analytically for each simulated path, and risk sensitivities are
computed in the same simulation as the value. The other is the likelihood method, which shifts
the differentiation to the density of the process being simulated (both are covered in Glasserman
(2003), Chapter 7). The pathwise method is the better (often much better) of the two. Unfortu-
nately, it requires absolute continuity of the payoff, a requirement that precludes its application to
TARNs. The likelihood method is applicable, and can be implemented straightforwardly following
Glasserman and Zhao (1999). Unfortunately, we found out that the likelihood method is not very
effective for TARNs. The main reason is that the standard error of Greeks in the likelihood method
is inversely proportional to the time to the first digital. In particular, it blows up as the fixing date
is approached. The number of paths required to get decent simulation error is very large.

In view of these results, it appears that there is no alternative but to use the ‘bump-and-revalue’
method of computing risk sensitivities. So we shift our focus on reducing the simulation noise in
Monte Carlo valuation. This is done by smoothing the discontinuities in the payoff.

5 Smoothing by conditioning
Intuitively, it is clear that the biggest contributor to the simulation noise is the first digital, i.e. the
feature of the contract that specifies that it knocks out on T2 if F1 (T1) is below a certain barrier.3

The variance of the estimate can be reduced if we could somehow handle this digital explicitly,
outside of the Monte Carlo simulation.

To develop the idea formally, let us define

Sn = (s − (R − Qn) /δn) /2.

In particular,

S1 = (s − R/δ1) /2,

and

{Q2 < R} ⇐⇒ {F1 (T1) > S1} .

Denote by V the value of the coupons that depend on the first knockout (the first coupon X1 (T1)

is paid always and is easy to handle separately)

V =
N−1∑
n=2

B−1
Tn+1

× Xn (Tn) × χ {Qn < R} .
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Then

v = E0 (V )

= E0 (V |F1 (T1) > S1) P0 (F1 (T1) > S1) + E0 (V |F1 (T1) ≤ S1) P0 (F1 (T1) ≤ S1) .

Clearly

E0 (V |F1 (T1) ≤ S1) = 0

so that

v = E0 (V |F1 (T1) > S1) P0 (F1 (T1) > S1) .

The first important observation is that the probability of not-knocking-out P0 (F1 (T1) > S1) can
be computed analytically (or analytically approximated with a high degree of precision). The time
T1 is usually quite short, 1 year or less. Thus, high-quality approximations to the distribution of
F1 (T1) can be obtained in almost any forward Libor model. For the particular case of a skew-
enhanced one, see e.g. Andersen and Andreasen (2000). Since the time to expiry is short, the
issue of non-deterministic drift of F1 (T1) under the spot Libor measure can be easily dealt with
by, for example, freezing the drift along the forward value of the interest rate curve.

The value E0 (V |F1 (T1) > S1) is interpreted as the value of the TARN under the condition
that it does not knock out on the date T1. This value can be computed in a Monte Carlo simulation
by adjusting the drifts of the forward Libor model in such a way as to move the Libor rate F1

‘away’ from the knockout region. We do not go into details as we will present a more general
scheme shortly.

The idea just presented is related to discontinuity smoothing via conditional expectations, see
Glasserman (2003, Section 7.2.3). In addition, it can be viewed as a special form of importance
sampling, as will be clear shortly.

The ability to remove the first discontinuity from the payoff being calculated by Monte Carlo
reduces the simulation error substantially. We, however, can go even further. Given the information
available on the coupon date Tn, we can evaluate the probability of knockout on the next day
(quasi) analytically (for the same reasons we can compute P0 (F1 (T1) ≤ S1)—the time to expiry
for the digital option in question is short, and excellent approximations to the distribution of the
relevant Libor rate are available. Next, we develop a scheme where we integrate all discontinuities
outside of Monte Carlo.

By an argument detailed in the Appendix, the trade can be valued as follows,

v =
N−1∑
n=1

Ẽ0

(
B−1

Tn+1
× Xn (Tn) × ψn

)
, (5.1)

ψn =
n−1∏
k=1

PTk−1 (Fk (Tk) > Sk) . (5.2)

Here the measure P̃ is defined by its Radon–Nikodym derivative with respect to P,

dP̃
dP

∣∣∣∣∣
F(t)

= � (t) ,
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where � (t) is a non-negative, normalized P-martingale such that

� (t) = Pt (Fm+1 (Tm+1) > Sm+1)

PTm (Fm+1 (Tm+1) > Sm+1)
×

m−1∏
k=1

χ {Fk+1 (Tk+1) > Sk+1}
PTn (Fk+1 (Tk+1) > Sk+1)

,

t ∈ [Tm, Tm+1).

This formula (see (5.1)) specifies that the value of a TARN can be computed by Monte Carlo
simulation under the measure P̃ by adding the values of coupons Xn weighted by weights ψn.
The difference between (5.1) and (2.1) is in weights multiplying the coupons. In the former, these
are ψn and in the latter, the weights are the knockout indicators χ {Qn < R} . Obviously, the ψns
are much smoother functions of a simulated path than the indicators, as in the former the digital
discontinuities have been integrated away by computing the probabilities PTk−1 (Fk (Tk) > Sk) in
(5.2) (quasi) analytically.

The value v is computed by Monte Carlo simulation under the measure P̃. This amounts to
changing the drift of the Brownian motion driving the forward Libor model, see the SDE (A.1) in
the Appendix. The measure P̃ can be seen as the measure under which the TARN never knocks
out. The method, which is based on the idea from Glasserman and Staum (2001), can be seen as
a flavor of the importance sampling method, where the measure is changed from P to P̃, and the
likelihood ratio is partially pre-integrated.

Another, quite different approach to smoothing the payoff is detailed in the next section. While
it is less effective, it can be simpler to implement.

6 Smoothing by ‘sausage’ Monte Carlo
Recall the main valuation formula (2.1). If ωj , j = 1, . . . , J, are simulated paths of interest rates,
then the discretized analog of (2.1) is given by

v ≈ 1

J

J∑
j=1

vj ,

(6.1)

vj =
N−1∑
n=1

B−1
Tn+1

(
ωj

)× Xn

(
Tn, ωj

)× χ
{
Qn

(
ωj

)
< R

}
.

The main source of simulation noise comes from the non-smooth dependence of the indicator
functions χ

{
Qn

(
ωj

)
< R

}
upon the simulated path ω. A small ‘bump’ to initial conditions will

result in a small bump to ω, but that can result in a large change in the indicator χ
{
Qn

(
ωj

)
< R

}
.

In essence, a whole coupon can be added or lost under a ‘bumped’ scenario compared to the base
one, resulting in significant simulation noise when computing risk sensitivities.

The idea of the ‘sausage’ Monte Carlo is to replace ‘point’ estimates of the payoff vj by their
averages over thin ‘sausages’ centered around simulated paths ωj . The state of a forward Libor
model at time t is defined by F (t, ω). We fix ε > 0, the width of the sausages. For each j, the
ε-sausage in the state space is defined by

Aε
j = {ω :

∥∥F (Ti, ω) − F
(
Ti, ωj

)∥∥ < ε ∀i = 1, . . . , N − 1
}
.
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The sampling formula (6.1) is approximated with the following expression,

ṽ ≈ J−1
J∑

j=1

ṽj ,

ṽj = E

(
N−1∑
n=1

B−1
Tn+1

(
ωj

)× Xn

(
Tn, ωj

)× χ
{
Qn

(
ωj

)
< R

}∣∣∣∣∣Aε
j

)
.

Since B−1
Tn+1

(ω) , Xn (Tn, ω) are generally smooth functions of the path ω, we evaluate them just
at the sample path (this is accurate to order ε),

ṽj =
N−1∑
n=1

B−1
Tn+1

(
ωj

)× Xn

(
Tn, ωj

)× E
(
χ
{
Qn

(
ωj

)
< R

}∣∣Aε
j

)
.

Using approximate conditional independence and approximate uniformity of the process inside
the sausage, the following formula can be obtained:

vj =
N−1∑
n=1

B−1
Tn+1

(
ωj

)× Xn

(
Tn, ωj

)× pn

(
ωj

)
,

pn (ω) = min

(
max

(
R − Qn

(
ωj

)+ ηn

2ηn

, 0

)
, 1

)
.

Here the exact dependence of ηns on ε is not important as, in practice, ηns can be set directly.
The formula replaces a discontinuous payoff χ

{
Qn

(
ωj

)
< R

}
with a continuous one pn

(
ωj

)
.

Instead of a simple barrier breach/no breach indicator, we introduced a concept of a ‘partial
barrier breach’. If a barrier breached partially on the date Tn, only a portion of it knocks out.
This introduces smooth dependence of the value on the simulation path. The bigger ηns are, the
‘more smooth’ this dependence becomes, resulting in smoother risk sensitivities. They, however,
cannot be made arbitrarily big as then the approximations used to compute

E
(
χ
{
Qn

(
ωj

)
< R

}∣∣Aε
j

)

break down, and the value ṽ becomes biased.
The smoothing methods presented above improve the quality of simulations, particularly for

risk sensitivities, dramatically. If, however, speed and accuracy are still an issue, a more advanced
approach is required.

7 Local projection method
At the risk of stating the obvious we note that the simpler the model, the better numerical methods
are available. Low-dimensional Markovian models afford using PDE methods that have much
better numerical properties than Monte Carlo methods available for high-dimensional models.
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Even Monte Carlo simulations run faster for simpler models as they typically have fewer variables
to evolve forward. As an approach to improve the numerical properties of the valuation algorithm,
one can look into building a simpler model.

A powerful general approach for such a task is the ‘local projection method’. Conceptually,
it specifies finding a simple, ‘local’ model that is locally calibrated to a ‘global’ model (such
as a forward Libor model) in such a way as to approximate the value of the global model for a
particular trade. By local calibration we understand calibrating the simple model to the elements of
the global model’s volatility structure that have the biggest impact on the value of the instrument
being valued (other, non-essential elements are ignored). With the critical elements of the volatility
structure matched between the local and the global models, one would expect the values produced
by both to closely match.

Identifying the relevant elements of the volatility structure is more of an art than a science.
The most successful example of this approach is to Bermuda swaptions (see Andreasen (2001)).
It has been determined that a Bermuda swaption price depends essentially only on the following
two elements. The first is the collection of volatilities of core, or co-terminal swaptions, and the
second is the intertemporal correlations of co-terminal swap rates. A simple 1-factor PDE-based
model, such as the Hull–White model, can be constructed and calibrated to these parameters. For
calibration, swaption volatilities come directly from the swaption grid, and the correlations are
computed from a fully calibrated forward Libor model.

Let us apply this approach to TARNs. To begin, we rewrite the TARN value as follows,

v = E0

(
N−1∑
n=1

B−1
Tn+1

δn

(
(s − 2Fn (Tn))

+ − Fn (Tn)
)
χ

{
n−1∑
i=1

δi (s − 2Fi (Ti))
+ < R

})
.

Scrutinizing the payoff under the expected value operator, we see that it only depends on the
following values

F̃ = {F1 (T1) , F2 (T2) , . . . , FN−1 (TN−1)}

(this is trivially true for everything but the numeraire B; for the numeraire we only need to
recall the formula (3.2) to realize that this is true for it as well). In particular, only the val-
ues of Libor rates on their fixing dates enter the payoff. Their values at intermediate times are
irrelevant. Thus, only the distributional properties of the (N − 1)-dimensional vector F̃ are rel-
evant. This is in contrast to a typical contract (such as a Bermuda swaption) that would depend
on values of Libor rates at various dates prior to their fixings, with a typical dimension of
(N − 1) (N − 2) /2.

From this relatively simple observation, powerful conclusions can be made. Such significant
reduction of dimensionality indicates that a simpler model can indeed be used. Focusing on the
covariance characteristics only (we will deal with volatility smiles later), and assuming lognormal
distributions throughout, it is clear that if two models agree on

1. Term volatilities of Libor rates {stdev (log Fn (Tn)) , n = 1, . . . , N − 1};
2. Intertemporal correlations of Libor rates {corr(log Fn(Tn), log Fm(Tm)),n, m = 1, . . . ,

N − 1},

then the prices of a TARN computed by the two models will closely match.
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An application of the local projection method to a TARN proceeds as follows.

• A forward Libor model is calibrated to the full swaption volatility grid and to the mod-
eler’s beliefs on the forward evolution of the volatility structure. This is the global
model;

• Relevant term volatilities and intertemporal correlations are computed from the global
model;

• A simpler model is constructed and calibrated to volatilities/correlations above. This is
the local model;

• The local model is used for valuation. When computing risk sensitivities, the calibration
info from the global model is recomputed for each bumped scenario, and the local model
is recalibrated.

The local model needs enough flexibility in its volatility structure specification to calibrate to
the set of volatility information required. Fortunately, the set is not very extensive. Even a simple
model such as the Hull–White model has enough degrees of freedom to match the covariance
information identified above. We provide more calibration details below, where a more realistic
model (an extension of the Hull–White model) is developed.

It is important to emphasize that the local projection method is not the same as just using a
simple model to value an exotic (something we warned against in the beginning of the chapter).
The forward Libor model is an integral part of the method, and is used to extract unobservable but
critical volatility information (such as the intertemporal correlations) from the observable market
inputs.

A question closely linked to low-dimensional approximations is that of the number of factors
required to value various contracts ‘properly’. While some instruments may appear to require
multi-factor models, this is usually an illusion. A properly calibrated one-factor model is usu-
ally more than adequate to price most deal types. This has been convincingly demonstrated for
Bermuda swaptions in Andersen and Andreasen (2001). Other types of exotics were discussed in
Andreasen (2004). In the latter, it has been noted that as long as the exotic depends on a single rate
at each point in time, a one-factor model (properly calibrated to a global forward Libor model)
is sufficient. It is only contracts that are linked to different rates observed at the same time (such
as CMS spread linked deals) which require two or more factors.

While proper volatility structure modeling is always the main concern for exotics, the effects
of the volatility smile should never be ignored.

8 Volatility smile effects
The payoff of the TARN on the date T1, viewed as a function of the Libor rate fixing F1 (T1) ,

has a number of important features. There is a digital-type discontinuity at F1 (T1) = S1, there is
a call-option type discontinuity at s/2, and the payoff is non-linear for F1 (T1) > S1. An example
is given in Figure 2. This observation serves to demonstrate that a model for a TARN needs to
recover the whole distribution of F1 (T1) (as implied from caplet prices across a range of strikes),
and not just some summary statistic such as an implied volatility at a certain strike.

One can argue that the main source of risk at time T1 in the strike dimension is concentrated
at the knockout strike F1 (T1) = S1. Thus, the argument goes, to value a TARN properly, it is
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TARN value to investor
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Figure 2: Example of a value of a TARN to investor on the first knockout date
as a function of the Libor rate fixing on that date, excluding coupons not
contingent on knockout

enough to choose a model that values a digital option with strike S1 consistently with the market,
without trying to match the whole volatility smile. While this argument has some merit for the
first date T1, it breaks down for the subsequent knockout dates. It is quite clear that the value
of F2 (T2) for which the deal knocks out depends on the fixing of F1 (T1) , something that is not
known at time t = 0. Thus, a model that only matches the implied volatility of F2 (T2) at a single
strike, or matches the slope of the smile at a certain strike, is going to be inadequate. The same
holds for subsequent Libor rates.

From this and previous sections, it is clear that a successful candidate for the local model of
the local projection method should be a model that has

• A low number of factors;

• Enough flexibility to calibrate to term volatilities and intertemporal correlations of Libor
rates;

• The ability to recover term volatility smiles of all Libor rates.

Of all the mechanisms available for generating smiles in interest rate models, stochastic volatil-
ity appears to be the most practical choice. We have commented before that the Hull–White model
is flexible enough to satisfy the first two requirements. There exists a model that combines the
Hull–White model with stochastic volatility. It is called the Stochastic Volatility Cheyette model
(SV–Cheyette), see Andersen and Andreasen (2002).

The SV–Cheyette model is defined by the following system of equations.

dx (t) = (−v (t) x (t) + y (t)) dt +
√

V (t)η (t, x (t) , y (t)) dW (t) , x (0) = 0,

dy (t) = (V (t) η2 (t, x (t) , y (t)) − 2v (t) y (t)
)

dt, y (0) = 0,
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dV (t) = κ (θ − V (t)) dt + εψ (V (t)) dZ (t) , V (0) = 1,

〈W, Z〉 = 0.

Here x (·) is the short rate state process, and is the primary driver of the interest rate curve. The
short rate is given by (f (s, t) and is the instantaneous forward rate at s for t ,

r (t) = f (t, t) = f (0, t) + x (t) .

The other state variable y (·) is an auxiliary variable, and V (·) is the stochastic variance process.
The volatility term of the process for dx has a stochastic volatility component

√
V (t) and a local

volatility component η (t, x, y) , giving it enough flexibility to match a wide variety of volatility
smile shapes. Note that the Hull–White model is obtained by setting η (t, x (t) , y (t)) ≡ η (t) ,

ε = 0.

Zero-coupon bonds (and, consequently, all market rates) are functions of x, y. The bond
reconstruction formula is

P (t, T ) = P t (0, T )

P (0, t)
exp

(
−G (t, T ) x (t) − 1

2
G2 (t, T ) y (t)

)
,

G (t, T ) =
∫ T

t

e− ∫ u
t v(d)dsdu.

The calibration of the SV–Cheyette model for a TARN can be decoupled into three distinct and
consequential steps: (a) smile calibration; (b) correlation calibration; and (c) volatility calibration.
We review the steps in turn.

Volatility smile generated by the SV–Cheyette model for a particular time horizon is controlled
mostly by the volatility of variance parameter ε and the form of the local volatility function η.

The relationships between volatility smiles at different expiries are controlled by the speed of
mean reversion of variance parameter κ. These can be chosen to match volatility smiles of Libor
rates Fn (Tn) .

The intertemporal correlations of Libor rates {corrt (log Fn(Tn), log Fm(Tm)),n, m = 1, . . . ,
N − 1} are controlled by the mean reversion of rates function v (t) . In particular, since the tenors
of Libor rates are short, the correlations of Libor rates can be approximated by correlations of the
short rate state process x (·) . The following formulas can be used for calibrating intertemporal
correlations,

corr (log Fn (Tn) , log Fm (Tm)) ≈ corr (x (Tn) , x (Tm))

≈




∫ min(Tn,Tm)

0
e2
∫ u

0 v(s)dsdu

∫ max(Tn,Tm)

0
e2
∫ u

0 v(s)dsdu




1/2

.

Once the SV parameters and the mean reversion are fixed, the term volatilities of Libor rates
(caplet volatilities) in the SV–Cheyette model are determined by the (time dependent) overall
level of the function η, i.e. by the function η0 (t) � η (t, 0, 0) . In fact, the function η0 (t) can
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be very efficiently bootstrapped from the strip caplet volatilities, as explained in Andersen and
Andreasen (2002).

In a sense, the SV–Cheyette model is an ‘ideal’ choice of a local model for TARNs as it has
just enough (and not more) flexibility to calibrate to all relevant covariance/smile information.

Having advocated using a volatility-smile enabled local model, it is only reasonable to have the
same level of sophistication in the global model. While originally we presented a skew-enhanced
forward Libor model (see (3.3)), in fact a better choice is a proper stochastic volatility forward
Libor model. A good choice would be the model described in Andersen and Brotherton-Ratcliffe
(2001). If volatility smiles of different Libor rates are substantially different, then a better choice
might be the model developed in Piterbarg (2004).

Having explained how to calibrate a low-dimensional local model for a TARN, we now proceed
to discuss numerical methods that can be used for such a model.

9 TARNs by PDEs
The SV–Cheyette model admits a PDE-based valuation scheme in ‘two-and-a-half’ factors, with
two ‘full’ factors x and V and one ‘half’ factor y (the process y (·) is locally deterministic), see
Andersen and Andreasen (2002). However, TARNs are path-dependent contracts. It appears that
we are forced to use a Monte Carlo method even with the SV–Cheyette model. While Monte
Carlo for the SV–Cheyette model is typically orders of magnitude faster than for a forward Libor
model, it would still be of great benefit if we could use a PDE-based valuation.

It turns out that the nature of path dependence in TARNs is such that it can indeed be handled
in backward-induction schemes. A general approach is well covered in the book by Wilmott
(2000). We quickly review it here, with a focus on TARN valuation.

The path dependency of a TARN is concentrated in the quantity Qn, the total accumulated
return to date. The idea of the method is to introduce an auxiliary state variable to keep track
of it. This variable stays constant between fixing dates and is updated on each fixing date by an
amount (a coupon paid) known on that date.

For simplicity, we describe the method in the context of a generic one-factor model. Suppose
the model is given by the following SDE on the short rate,

dr (t) = a (t, r (t)) dt + b (t, r (t)) dW (t) .

Zero-coupon bonds and Libor rates are functions of r, and we use self-evident notations P (r, t, T ) ,

Fn (r, t) , and so on.
Let V (t, r, z) be the value of the TARN at time t, for the short rate r, assuming that the total

accumulated coupon at time t is z. For each particular z, the function V satisfies the following
SDE,

Vt (t, r, z) + a (t, r) Vr (t, r, z) + b2 (t, r)

2
Vrr (t, r, z) = rV (t, r, z) . (9.1)

The terminal condition is given at time TN by

V (TN−, r, z) = 0. (9.2)
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The following boundary/continuity conditions should be enforced at times Tn,

V (Tn, r, z) = V
(
Tn, r, z + δn · (s − 2Fn (r, Tn))

+) , (9.3)

V (Tn−, r, z) = V (Tn, r, z) + δnP (r, Tn, Tn+1)
(
(s − 2Fn (r, Tn))

+ − Fn (r, Tn)
)
. (9.4)

The scheme works as follows. The function V is initialized with the terminal values (9.2). Then,
for each n = N − 1, . . . , 0, the following is done,

1. For each value of z, the PDE (9.1) is solved backwards on [Tn, Tn+1) with the terminal
condition V (Tn+1−, r, z);

2. The continuity condition (9.4) is applied ‘across z-slices’, corresponding to the update of
the total return Qn;

3. The boundary condition (9.3), i.e. the payment of the coupon at time Tn, is applied;

4. The last step gives the new terminal condition, and the steps are repeated with n = n − 1.

The final value is computed by

v = V
(
0, r∗, 0

)
,

where r∗ is today’s value of the short rate.
The variable z (just like t and r) is typically discretized. The scheme amounts to solving PDEs

(9.1) independently for each discretized value of z, with the linkage between different ‘z-slices’
given by (9.3).

10 Conclusions
The local projection method we develop combines a forward Libor model and the Stochastic
Volatility Cheyette model. The method provides a robust risk management framework for TARNs.
Efficient numerical methods of the SV–Cheyette model are combined with calibration advantages
of a forward Libor model. While the SV–Cheyette model is used for routine valuation and risk
reporting, periodic benchmarking against the forward Libor model can be performed by using
variance reduction techniques presented in the chapter.

Appendix A. Importance sampling for TARNs
We observe that due to non-negativity of Ci (·) , the following equalities hold P-a.s.

{Qn < R} ⇐⇒ {
Qn−1 < R, (s − 2Fn−1 (Tn−1))

+ < (R − Qn−1) /δn−1
}

⇐⇒ {Qn−1 < R, Fn−1 (Tn−1) > Sn−1}

and

{Qn < R} ⇐⇒ {Q1 < R, Q2 < R, . . . , Qn < R}
⇐⇒ {F1 (T1) > S1, . . . , Fn−1 (Tn−1) > Sn−1} .
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Hence

χ {Qn < R} =
n−1∏
k=1

χ {Fk (Tk) > Sk} .

Define

�n (t) =




Pt (Fn+1 (Tn+1) > Sn+1)

PTn (Fn+1 (Tn+1) > Sn+1)
, t ∈ [Tn, Tn+1),

χ {Fn+1 (Tn+1) > Sn+1}
PTn (Fn+1 (Tn+1) > Sn+1)

, t ≥ Tn+1,

1, t < Tn.

We note that �n (t) is a non-negative P-martingale. Moreover, �n (t) is constant on [0, Tn] and
[Tn+1, ∞). In addition, �n (t) is F (Tn+1)-measurable for t ≥ Tn+1.

Define � (t) by

� (t) =
N−2∏
n=0

�n (t) .

It is not hard to show that

{� (t) , t ∈ [0, ∞)}

is a martingale as well. Denote the value of the nth coupon, contingent on survival, by

xn = E0

(
B−1

Tn+1
× Xn (Tn) × χ {Qn < R}

)
.

Then

xn = E0

(
B−1

Tn+1
× Xn (Tn) × χ {Qn < R}

)

= E0

(
B−1

Tn+1
× Xn (Tn) ×

n−1∏
k=1

χ {Fk (Tk) > Sk}
)

= E0

(
B−1

Tn+1
× Xn (Tn) ×

n−1∏
k=1

χ {Fk (Tk) > Sk}
PTk−1 (Fk (Tk) > Sk)

×
n−1∏
k=1

PTk−1 (Fk (Tk) > Sk)

)

= E0

(
B−1

Tn+1
× Xn (Tn) ×

n−1∏
k=1

�k−1 (Tn) ×
n−1∏
k=1

PTk−1 (Fk (Tk) > Sk)

)

= E0

(
B−1

Tn+1
× Xn (Tn) ×

N−1∏
k=1

�k−1 (Tn) ×
n−1∏
k=1

PTk−1 (Fk (Tk) > Sk)

)

= E0

(
� (Tn) × B−1

Tn+1
× Xn (Tn) ×

n−1∏
k=1

PTk−1 (Fk (Tk) > Sk)

)
.
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Define a new measure P̃ by its Radon–Nikodym derivative with respect to P,

dP̃
dP

∣∣∣∣∣
F(t)

= � (t) .

Then

xn = Ẽ0

(
B−1

Tn+1
× Xn (Tn) × ψn

)
,

ψn =
n−1∏
k=1

PTk−1 (Fk (Tk) > Sk) .

Strictly speaking, the measure P̃ is not equivalent to P because � (t) can be zero. The important
observation, however, is that the value of the TARN is zero for those paths for which � (t) is
zero. Thus, P̃ and P are equivalent on the ‘relevant’ subspace of the sample space �. We omit
technical details.

To simulate forward Libor rates under the measure P̃, two approaches can be used. The first
one, suggested in Glasserman and Staum (2001), is based on the following idea. If a standard
Gaussian random variable ξ is simulated by the formula

ξ = 
−1 (U) ,

where U is a uniform (on [0, 1]) draw and 
 (·) is the standard Gaussian CDF, then ξ conditioned
on the event {ξ > b} can be simulated by the formula

ξ̃ = 
−1 (
 (b) + (1 − 
 (b)) Ũ
)
,

where Ũ is a uniform draw on [0, 1] . To apply this idea in the context of the (multi-dimensional)
forward Libor model, we need to rotate the covariance structure of forward Libor rates such that
the forward Libor rate relevant for the next knockout is simulated by a single Gaussian draw, and
apply the above conditioning to that Gaussian variable.

Another approach is based on treating the change of measure from P to P̃ as one induced
by a change of drift of the underlying Brownian motion. Let us compute the drift of dW, the
Brownian motion that drives the forward Libor model (3.3), under P̃. The state of the model at
time t is completely determined by the vector F (t) of all forward Libor rates observed at t. Thus,
for every n, the probability Pt (Fn (Tn) > Sn) can be seen as a deterministic function of F (t) ,

and we define a deterministic function �n (t, x) by

�n (t, x) = E
(
χ {Fn (Tn) > Sn}|F (t) = x

)
.

Clearly, for t ∈ [Tn, Tn+1),

d� (t) /� (t) = d�n+1
(
t, F (t)

)
/�n+1

(
t, F (t)

)
.
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By Ito’s lemma (discarding dt terms because � (t) is a martingale), under P,

d�n+1
(
t, F (t)

)
/�n+1

(
t, F (t)

) = 1

�n+1
(
t, F (t)

)
N−1∑
j=1

∂�n+1
(
t, F (t)

)
∂xj

dFj (t)

= γn+1
(
t, F (t)

)
dW (t) ,

where

γn+1 (t, x) =
N−1∑
j=1

λj (t) φ
(
xj

) ∂

∂xj

log �n+1 (t, x) .

Define

γ (t, x) =
N−2∑
n=0

χ {Tn ≤ t < Tn+1} × γn+1 (t, x) ,

then

d� (t) /� (t) = γ
(
t, F (t)

)
dW (t) , t ≥ 0.

By Girsanov’s theorem,

dW̃ (t) = dW (t) − γ
(
t, F (t)

)
dt

is a driftless Brownian motion under P̃. The forward Libor model can be simulated under the
measure P̃ using the following SDE (compare to (3.3))

dFn (t) = λn (t) φ (Fn (t))


γ

(
t, F (t)

)+
n∑

j=1

1{t<Tj }
δjφ

(
Fj (t)

)
1 + δjFj (t)

λj (t)


 dt

+ λn (t) φ (Fn (t)) dW̃ (t) , (A.1)

n = 1, . . . , N − 1.

FOOTNOTES & REFERENCES

1. So called ‘snowballs’ are the most significant recent development in callable Libor exotics.
In a snowball, each coupon is a function of interest rates and the previous coupon. Such path
dependence can be easily handled in a Monte Carlo-based forward Libor model, our model of
choice for callable Libor exotics. All the methods developed for ‘standard’ callable Libor exotics
in Piterbarg (2003) can be easily extended to snowballs.
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2. A TARN can be based on any type of a structured coupon. Historically the inverse floating
coupon was the first one to be used. Our analysis is not specific to a type of coupon, and we
use the inverse floating one for concreteness.
3. Sometimes a TARN is structured so that the first digital is virtually worthless, but the second
one is important. The discussion that follows should be modified accordingly.
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Fast Valuation of a
Portfolio of Barrier
Options under the
Merton’s Jump Diffusion
Hypothesis
Antony Penaud∗

We want to price a large portfolio of barrier options when the underlying follows
Merton’s jump diffusion process. We do so by solving—for each barrier—the appro-
priate Fokker Planck equation for the risk neutral probability density function.

1 Introduction
There are nice semi-analytic formulas for the price of European options when the underlying
follows Merton’s jump diffusion model (see Merton 1976). There are also nice formulas for
barrier options under the geometric Brownian motion hypothesis (see Haug 1997). However, for
barrier options under Merton’s model no simple pricing formula is available. A natural method
for pricing a barrier option under Merton’s model would be to solve the partial integro differential
equation (PIDE) with appropriate final and boundary conditions.

Let’s assume that we want to price a portfolio of many thousand barrier options and that the
underlying is the same for all deals.

Solving many thousand PIDEs (one for each deal) would be far too long and we need to turn
to another approach.

∗I would like to thank Yanmin Li and James Selfe for helpful suggestions.
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We propose a pricing methodology adapted to the problem. Indeed we aim for the method
which would best price all the deals together.1 Our idea is to find—for each barrier—the joint
risk neutral probability density function (pdf) as a function of time.2 Once we know the pdfs we
can price knock out options3 by integrating the payoffs.

The probability density function is found by solving the Fokker Planck equation (a.k.a. forward
Kolmogorov equation) that corresponds to the jump diffusion process. This PIDE is solved by an
adapted Crank Nicolson scheme (Crank Nicolson for the diffusion and explicit for the jump part).

Our approach would not be the best if we wanted to price a few deals only. Indeed, solving
the forward PIDE is not as nice as solving the backward pde (integration of the risk neutral pdf
is required and the initial condition is a delta function) and it would not be worth it. But for
non Monte Carlo approaches computation time is—as far as we are aware—proportional to the
number of deals. Whereas for our pricing methodology computation time is proportional to the
number of barriers. So for a large portfolio of options our method becomes better.4

First we are going to review Merton’s jump diffusion model. Then we mention the natural way
for pricing a barrier option under Merton’s model. After that we explain our method for pricing the
portfolio of barrier options: we write the equations and go through some implementation issues.

Merton (1976) introduced the jump diffusion model and the pricing framework. Andersen and
Andreasen (2000) and Lipton (2002) have looked at forward PIDEs. Andersen and Andreasen
derive the forward PIDE for the evolution of European call prices as a function of strike and
maturity (generalised Dupire equation). They solve it via an alternative direction implicit (ADI)
finite different scheme combined with fast Fourier transform (FFT) methods. Lipton develops
a new approach for the pricing of path-dependent options on assets driven by jump diffusions
with log-exponential Poissonian jumps. His approach is based on fluctuation identities for Levy
processes. Metwally and Atiya (2002) use Brownian bridge methods for simulating the jump
diffusion process and price barrier options.

2 Merton’s jump diffusion model
The underlying S follows the random walk

dS

S
= (r − λk) dt + σdz + dq (1)

where r is the risk neutral drift, σ is the volatility, dz is a Gaussian random variable with mean
0 and variance dt and

dq =
{

Y − 1 if jumps occurs
0 otherwise.

During the time interval dt the probability of q jumping is λdt .
If there is a jump, the jump part of the change in the underlying is dS = (Y − 1)S, i.e. S goes

to YS.
The expectation of Y − 1 is called k.
So the expected change in S (from the jump component) is Sλk dt .
If we want r to be the instantaneous total expected rate of return, then we need to subtract

λkdt in the diffusion part of the equation, and E[dS/S] = r dt .
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Assuming independence between random variables (dz and dq) the distribution for S(t) is

S(t) = e(r− σ2
2 −λk)t+z(t)y(n). (2)

Above, z(t) is N(0, σ 2t) and y(0) = 1, y(n) = �n
1Yi with Yi’s iid jumps. Note that n is a random

variable too.

2.1 Lognormal jumps

We assume jumps to be lognormal, i.e. we choose Merton’s jump diffusion model. In this section
we give a summary of European option pricing under Merton’s model.

Assume E[lnY ] = γ − δ2

2 and var[lnY ] = δ2, then E[Y ] = eγ = 1 + k and so γ = ln(1 + k).
For n fixed, y(n) is the product of n lognormal random variables so it is lognormal, and

therefore S(t) is lognormal too. So any European option can be priced by doing the sum of
the Black–Scholes prices weighted by the probability of the corresponding number of jumps
occurring.

Quantitatively, the distribution for S(t) (in case of n jumps) is

S(t) = S(0)e(rnt− σ2 t
2 − nδ2

2 )+νnφ
√

t (3)

where ν2
n = σ 2 + nδ2/t and rn = r − λk + nγ/t .

So the European price is

European price =
∞∑
0

PnDnBS(S, T , E, νn, rn) (4)

with Pn = e−λT (λT )n

n! the probability of exactly n jumps occurring and Dn = e−λkT (1 + k)n the
correcting term for the discounting term (without this term the discounting term would be e−rnT

but it should be e−rT ). This can finally simplify to

European price =
∞∑
0

e−λ′T (λ′T )n

n!
BS(S, T , E, νn, rn) (5)

with λ′ = λ(1 + k).

2.2 Price as a solution of a PIDE

Using standard arguments, the pricing equation for a European option under Merton’s model is
the following PIDE:

Vt + σ 2S2

2
VSS + λE[V (t, JS) − V (t, S)] + (r − λk)SVS − rV = 0 (6)

together with V (T , S) = payoff(S) and VSS(t, S) = 0 on both sides.
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3 Pricing a barrier option

3.1 Geometric Brownian motion

Analytic formulas are available (see Haug 1997). In the PDE framework the barrier option price
can be found by solving the following backward equation (see Wilmott 2000):

Vt + σ 2S2

2
VSS + rSVS − rV = 0 (7)

together with V (T , S) = payoff(S), V (t, B) = 0 if it is a knockout barrier, and VSS(t, S) = 0 on
the other side.

3.2 Merton’s jump diffusion model

In this case it is the PIDE that needs to be solved backward

Vt + σ 2S2

2
VSS + λE[V (t, JS) − V (t, S)] + (r − λk)SVS − rV = 0 (8)

together with V (T , S) = payoff(S), V (t, B) = 0 if it is a knockout barrier, and VSS(t, S) = 0 on
the other side.

4 Pricing the portfolio of barrier options

4.1 Model

There is no easy way to price a barrier option under the jump diffusion hypothesis.
In this chapter we want to price a portfolio of many thousand barrier options. The volatility5

and the discount curve are the same for all deals. We obviously need to take this into account
when it comes to choosing the methodology. This is why we choose a method that is going
to solve a lot of deals at the same time as opposed to a method that takes care of each deal
independently.

For each barrier we are going to find the joint risk neutral probability density function6 for
all maturities by solving the appropriate forward Kolmogorov equation. When we know the risk
neutral density function it is straightforward to get the price of the knockout barrier option as it
is the integral of the payoff times of the pdf. And as there are only a few barriers, only a few
forward Kolmogorov equations need to be solved for each underlying. Computation time is not
proportional to the number of deals. It is proportional to the number of barriers.7

4.2 Mathematical formulation

Let’s write down the PIDE satisfied by the risk neutral density function. Let x = log(S/S0), then
the jump diffusion process is

dx =
(
r(t) − σ(t)2

2
− λk

)
dt + σ(t) dX + log Ydq. (9)
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For a down option,8 the corresponding forward Kolmogorov equation for the probability density
function is

ft = σ 2(t)

2
fxx −

(
r(t) − σ 2(t)

2
− λk

)
fx + λ


∫ ∞

log B
S0

f (y)
e
− (x−y−γ+0.5δ2)2

2δ2

δ
√

2π
dy − f


 (10)

together with initial condition

f (0, x) = δ(x) (11)

and boundary condition for a knockout barrier9

f

(
t, log

B

S0

)
= 0. (12)

Let’s try to intuitively explain the meaning of the last term in the Kolmogorov equation. With
probability λdt there is a jump. In that case, at x, the variation w.r.t. time of the pdf is equal
to the difference between the ‘particles’ coming from elsewhere to x (the integral term) and the
‘particles’ leaving x (the term f (x)).

Now, the price of the down-and-out barrier (B < S0) maturing at T and with payoff g(S) is

Price = S0DF(T )

∫ ∞

log B
S0

f (T , x)g(ex) dx. (13)

The price of the up-and-out barrier (B > S0) maturing at T and with payoff g(S) is

Price = S0DF(T )

∫ log B
S0

−∞
f (T , x)g(ex) dx. (14)

In the above equations DF(T ) is the domestic discount factor at time T .

Remark How would we price a down-and-out option if a rebate b(t) is paid when the barrier is
knocked out? We would find the probability p(t) dt that the barrier is knocked out in the interval
(t, t + dt) by

p(t) = − d

dt

∫ ∞

log B
S0

f (t, x) dx. (15)

And the price of the down-and-out option with rebate would be

Price(b(t)) = Price(b ≡ 0) +
∫ T

0
DF(t)p(t)b(t) dt. (16)

4.3 Implementation
We solve the PIDE via finite difference. We go for the Crank Nicolson scheme for the partial
derivatives (see Wilmott 2000) and we approximate the integral term with a simple explicit
approximation.
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Integration of the pdf at maturity gives the price of the knockout barrier option. The price of
the knockin barrier option is the European option price minus the knockout barrier option price.

Now, we make a few comments on some implementation issues.

The boundary conditions There are two boundary conditions: one on the barrier and one on the
other side.

• On the other side of the barrier the node should be far away enough from the current
spot price so that it is unlikely that the spot reaches it. The value of the pdf there is zero
(second derivative equal to zero does not work well as there should not be loss or gain
in the integral on that side).

• Now on the barrier the pdf value should be forced to be zero. This way particles that
have already touched the barrier do not contribute anymore to the (jump) diffusion of the
pdf. The programmer might not be able to put the barrier on a node; in this case he can
use an extra node outside the barrier (so the barrier is between the first and the second
node) and assume the pdf is linear in between the two nodes (see Wilmott 2000). The
value of the pdf on the first node is then negative.

Initial condition The delta function is approximated by the following hat function:

f (t = 0, x) =



1

δx
if x = 0

0 otherwise

where δx is the space step.

Choosing the space step and the time step We want the time step to be equal to the space step.
However, this size does not have to be the same on the whole grid. In fact it is best to start (i.e.
for short maturities) with a fine grid and then switch to a grid in which nodes are further apart
from each other. Shortly after time 0 (and for a longer time when volatility is small) the pdf looks
like a peak. And one gains a lot in accuracy10 by using a fine mesh. Moreover it does not cost too
much computation time as the mesh does not need to be too wide (shortly after time 0 the spot
is close to its original value). Eventually the pdf spreads out and one can switch to a grid which
is both wider and less fine. The new space step (time step) could be a multiple of the old one so
no interpolation is required when we switch from the fine space step grid to the larger one.

5 Conclusion
Standard pricing methodologies focus on the pricing of one exotic deal under one particular model.
Here we have looked at the pricing of a large portfolio of exotic options. We have indeed focused
on the pricing of many thousand barrier options under Merton’s jump diffusion model.

Because of computation time the best method for pricing one deal is not necessarily the best
for pricing such a large portfolio. Our method—while not the best for pricing a single deal—is
very fast when it comes to pricing many deals. For each barrier we solve the forward Kolmogorov
equation that gives us the joint risk neutral probability density function. So simple integration of
that function gives the price of a knockout barrier option. Most of the computation time is taken
by solving the PIDEs and computation time is proportional to the number of barriers.
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FOOTNOTES & REFERENCES

1. We want to know the values of the individual deals. If we were interested in the value of
the whole portfolio only we could solve—for each barrier—the backward PIDE and add the
relevant payoffs at the relevant times to the portfolio’s value.
2. The probability measured by the pdf is the probability for the asset to have a certain value
at a certain time and that it has not touched the barrier before.
3. The price of a knockin option is the price of the European option minus the knockout option
price.
4. We suppose that the number of different barriers is not large.
5. We assume that the volatility is a function of time and is piecewise constant.
6. We mentioned what we mean by joint risk neutral pdf in the introduction.
7. Provided that the longest maturity is about the same for each barrier.

8. If the barrier is above the underlying price then the integral is
∫ log B

S0−∞ as opposed to
∫ ∞

log B
S0

.

9. The price of the knockin barrier is the price of the European option minus the price of the
knockout option.
10. Both from the finite difference approximation perspective and the payoff integration
perspective.

� Andersen, L. and Andreasen, J. (2000) Jump-diffusion processes: volatility smile fitting and
numerical methods for pricing. Review of Derivatives Research 4, 231–262.
� Gatheral, J. (2003) Case Studies in Financial Modelling Course Notes, Courant Institute of
Mathematical Sciences, Fall Term.
� Haug, E. G. (1997) The Complete Guide to Option Pricing Formulas. McGraw Hill.
� Lipton, A. (2002) Path-dependent options on assets with jumps and a new approach to
credit default spreads. 5th Columbia-Jaffe Conference, New York, April 5th.
http://www.math.columbia.edu/lrb/columbia2002.pdf
� Merton, R. C. (1976) Option pricing when underlying returns are discontinuous. Journal of
Financial Economics, 3 (January–March): 125–44.
� Metwally, S. and Atiya, A. (2002) Using Brownian bridge for fast simulation of jump-diffusion
processes and barrier options. The Journal of Derivatives, Fall, vol. 10, number 1, 43–54.
� Wilmott, P. (2000) Paul Wilmott on Quantitative Finance John Wiley & Sons Ltd.
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An Analysis of Pricing
Methods for Basket
Options
Martin Krekel, Johan de Kock, Ralf Korn and
Tin-Kwai Man

This chapter deals with the task of pricing basket options. Here, the main problem
is not path dependency but the multi-dimensionality which makes it impossible to
give exact analytical representations of the option price. We review the literature and
compare six different methods in a systematic way. Thereby we also look at the
influence of various parameters such as strike, correlation, forwards or volatilities on
the performance of the different approximations.

1 Introduction
While with many exotic options it is even harder to fully understand the way their final payoff is
built up, the construction of the payoff of a (European) basket option is very simple. We define
the price of a basket of stocks by

B(T ) =
n∑

i=1

wiSi(T ),

i.e. it is the weighted average of the prices of n stocks at maturity T . Here the weights wi are
usually assumed to be positive and to sum up to 1, but also to be quite arbitrary.

Our task is to determine the price of a call (θ = 1) or a put (θ = −1) with strike K and
maturity T on the basket, i.e. to value the payoff

PBasket(B(T ), K, θ) = [θ(B(T ) − K)]+.

Contact address: Fraunhofer ITWM, Department of Financial Mathematics, 67653 Kaiserslautern, Germany
E-mail: krekel@itwm.fhg.de
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We price these options with the Black–Scholes model. Note that by the form of the payoff it
is not necessary to distinguish between the trading date and the valuation date to calculate the
values of these options, since they are not path dependent. Hence without loss of generality we
can set t = 0 and denote the remaining time to maturity with T . In order to ease the calculations
we use the so-called forward notation. The T -forward price of stock i is given by

FT
i = Si(0) exp

(∫ T

0

(
r(s) − di(s)

)
ds

)

where r(.) and di(.) are deterministic interest rates and dividend yields. With its help the stock
prices can be represented as

Si(T ) = FT
i exp

(
−

∫ T

0

1

2
σ 2

i ds +
∫ T

0
σidWi(s)

)

where the Wi(.) are correlated one-dimensional Brownian motions with correlation of ρij . Further,
we define the discount factor as

DF(T ) = exp

(
−

∫ T

0
r(s)ds

)
.

The forward-oriented notation has two advantages: firstly, contrary to short rates and dividend
yields, forward prices and discount factors are market quotes. Secondly, from a computational
point of view, it is less costly to work with single numbers, i.e. the forward prices and the discount
factor, instead of several term structures, namely the short rates and the dividend yields.

The problem of pricing the above basket options in the Black–Scholes model is the following:
the stock prices are modelled by geometric Brownian motions and are therefore log-normally
distributed. As the sum of log-normally distributed random variables is not log-normal, it is not
possible to derive an (exact) closed-form representation of the basket call and put prices. Due to the
fact that we are dealing with a multi-dimensional process, only Monte Carlo or quasi-Monte Carlo
(and over multi-dimensional integration) methods are suitable numerical methods to determine the
value of these options. As these methods can be very time consuming we will present alternative
valuation methods which are based on analytical approximations in different senses.

2 ...and here are the candidates!
(a) Beisser’s conditional expectation techniques
Beisser (1993) adapts an idea of Rogers and Shi (1995) introduced for pricing Asian options. By
conditioning on the random variable Z and using Jensen’s inequality the price of the basket call
is estimated by the weighted sum of (artificial) European call prices, more precisely

E
(
[B(T ) − K]+

) = E
(

E
(

[B(T ) − K]+
∣∣∣Z))

≥ E

(
E

([
B(T ) − K

∣∣∣Z]+))

= E

([
n∑

i=1

wiE[Si(T )|Z] − K

]+)
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where

Z := σz√
T

W(T ) =
n∑

i=1

wiSi(0)σiWi(T )

with σz appropriately chosen. Note that in contradiction to Si(T ), all conditional expectations
E[Si(T )|Z] are log-normally distributed with respect to one Brownian motion W(T ). Hence,
there exists an x∗, such that

n∑
i=1

wiE

[
Si(T )

∣∣∣∣W(T ) = x∗
]

= K.

By defining:

K̃i := E

[
Si(T )

∣∣∣∣W(T ) = x∗
]

the event
∑n

i=1 wiE[Si(T )|Z] ≥ K is equivalent to E[Si(T )|Z] ≥ K̃i for all i = 1, . . . , n.
Using this argument we conclude that

E

([
n∑

i=1

wiE[Si(T )|Z] − K

]+)
=

n∑
i=1

wi E
([

E[Si(T )|Z] − K̃i

]+)

=
n∑

i=1

wi

[
F̃ T

i N(d1i ) − K̃iN(d2i )
]

where F̃ T
i , K̃i adjusted forwards and strikes and d1i , d2i are the usual terms with modified

parameters.

(b) Gentle’s approximation by geometric average

Gentle (1993) approximates the arithmetic average in the basket payoff by a geometric average.
The fact that a geometric average of log-normal random variables is again log-normally distributed
allows for a Black–Scholes type valuation formula for pricing the approximating payoff. More
precisely after rewriting the payoff of the basket option as

PBasket(B(T ), K, θ) =
[
θ

(
n∑

i=1

wiSi(T ) − K

)]+

=
[
θ

((
n∑

i=1

wiF
T
i

)
n∑

i=1

aiS
∗
i (T ) − K

)]+
,
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where

ai = wiF
T
i∑n

i=1 wiF
T
i

,

S∗
i (T ) = Si(T )

F T
i

= exp

(
−1

2

∫ T

0
σ 2

i ds +
∫ T

0
σidWi(s)

)

we approximate
∑n

i=1 aiS
∗
i (T ) by the geometric average, thus

B̃(T ) =
(

n∑
i=1

wiF
T
i

)
n∏

i=1

(
S∗

i (T )
)ai .

To correct for the mean,

K∗ = K − (
E(B(T )) − E(B̃(T ))

)

is introduced. As approximation for (B(T ) − K)+, (B̃(T ) − K∗)+ is used, which—as B̃(T ) is
log-normally distributed—can be valued by the Black–Scholes formula resulting in

VBasket(T ) = DF(T )θ
(
em̃+ 1

2 ṽ2
N(θd1) − K∗N(θd2)

)
, (2.1)

where DF(T ) is the discount factor, N(·) the distribution function of a standard normal random
variable and

d1 = m̃ − log K∗ + ṽ2

ṽ
,

d2 = d1 − ṽ ,

m̃ = E(log B̃(T )) = log

(
n∑

i=1

wiF
T
i

)
− 1

2

n∑
i=1

aiσ
2
i T and

ṽ2 = var(log B̃(T )) =
n∑

i=1

n∑
j=1

aiajσiσjρij T .

(c) Levy’s log-normal moment matching

The basic idea of Levy (1992) is to approximate the distribution of the basket by a log-normal
distribution exp(X) with mean M and variance V 2 − M2, such that the first two moments of this
and of the original distribution of the weighted sum of the stock prices coincide, i.e.

m = 2 log(M) − 0.5 log(V 2)

v2 = log(V 2) − 2 log(M) and

M ≡ E(B(T )) =
n∑

i=1

wiFi(T )
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V 2 ≡ E(B2(T )) =
n∑

i=1

wiwjF
T
i F T

j exp(σiσjρij T )

result in

E(B(T )) = E
(
eX

) = em+0.5v2
and E(B2(T )) = E

(
e2X

) = e2m+2v2

where X is a normally distributed random variable with mean m and variance v2.
The basket option price is now approximated by

VBasket(T ) ≈ DF(T ) (MN(d1) − KN(d2))

with

d1 = m − ln(K) + v2

v
,

d2 = d1 − v.

Note the subtle difference to Gentle’s method. Here, the distribution of B(T ) is approximated
directly by a log-normal distribution that matches the first two moments, while in Gentle’s approx-
imation only the first moment is matched.

(d) Ju’s Taylor expansion

Ju (2002) considers a Taylor expansion of the ratio of the characteristic function of the arith-
metic average to that of the approximating log-normal random variable around zero volatility. He
includes terms up to σ 6 in his closed-form solution.

Let

A(z) =
n∑

i=1

FT
i exp

(
−1

2
(zσi)

2T + zσiWi(T )

)

be the arithmetic mean where the volatilities are scaled by a parameter z. Note that for A(1) we
recover the original mean. Let Y(z) be a normally distributed random variable with mean m(z) and
variance v(z) such that the first two moments of exp(Y (z)) match those of A(z). The appropriate
parameters are derived in section (c), only σi has to be replaced by zσi . Let X(z) = log(A(z)),
then the characteristic function is given as:

E[eiφX(z)] = E[eiφY (z)]
E[eiφX(z)]

E[eiφY (z)]
= E[eiφY (z)]f (z),

where

E[eiφY (z)] = eiφm(z)−φ2v(z)/2

f (z) = E[eiφX(z)]e−iφm(z)+φ2v(z)/2
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Ju performs a Taylor expansion of the two factors of f (z) up to z6, leading to

f (z) ≈ 1 − iφd1(z) − φ2d2(z) + iφ3d3(z) + φ4d4(z),

where di(z) are polynomials of z and terms of higher order than z6 are ignored. Finally E[eiφX(z)]
is approximated by

E[eiφX(z)] ≈ eiφm(z)−φ2v(z)/2(1 − iφd1(z) − φ2d2(z) + iφ3d3(z) + φ4d4(z)).

For this approximation, an approximation of the density h(x) of X(1) is derived as

h(x) = p(x) +
(

d

dx
d1(1) + d2

dx2
d2(1) + d3

dx3
d3(1) + d4

dx4
d4(1)

)
p(x)

where p(x) is the normal density with mean m(1) and variance v(1). The approximate price of a
basket call is then given by

VBasket(T ) = DF(T )
{[(∑

wiF
T
i

)
N(d1) − KN(d2)

]

+K

[
z1p(y) + z2

dp(y)

dy
+ z3

d2p(y)

dy2

]}
,

where

y = log(K), d1 = m(1) − y√
v(1)

+
√

v(1), d2 = d1 −
√

v(1)

and z1 = d2(1) − d3(1) + d4(1), z2 = d3(1) − d4(1), z3 = d4(1). Note that the first summand is
equal to Levy’s approximation and the second summand gives the higher order corrections.

(e) The reciprocal gamma approximation by Milevsky and Posner

Milevsky and Posner (1998a) use the reciprocal gamma distribution as an approximation for
the distribution of the basket. The motivation is the fact that the distribution of correlated log-
normally distributed random variables converges to the reciprocal gamma distribution as n →
∞. Consequently, the first two moments of both distributions are matched to obtain a closed-
form solution. Let GR be the reciprocal gamma distribution and G the gamma distribution with
parameters α, β, then per definition:

GR(y, α, β) = 1 − G(1/y, α, β).

If the random variable Y is reciprocally gamma distributed, then

E[Y i] = 1

βi(α − 1)(α − 2) . . . (α − i)
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and with M and V 2 denoting the first two moments as defined in the previous section, we get:

α = 2V 2 − M2

V 2 − M2

β = V 2 − M2

V 2M

Basic calculations yield:

VBasket(T ) ≈ DF(T ) (MG(1/K, α − 1, β) − KG(1/K, α, β))

Note that we use the parametrisation of the gamma distribution found in Staunton (2002), since
this produces more accurate results than that from the original paper by Milevsky and Posner
(1998a).

(f) Milevsky and Posner’s approximation via higher moments
Milevsky and Posner (1998b) use distributions from the Johnson (1994) family as state price
densities to match higher moments of distribution of the arithmetic mean. More precisely, they
write the price of a call on a basket as:

VBasket(T ) = DF(T )

[∫ ∞

0
(x − K)+h(x)dx

]

where h(x) is the state price density. Note that we would end up in Levy’s approximation if
we were using the log-normal density with the first two moments matching those of the mean.
Milevsky and Posner, however, use two members of the Johnson family, which is a collection of
statistical distributions, that can be represented by a transformation of the normal distribution Z:

Type I : X = c + d exp

(
Z − a

b

)
or

Type II : X = c + d sinh

(
Z − a

b

)

The parameters a, b, c and d are chosen, so that the four moments of the arithmetic mean are
approximated (since there are no closed-form solutions for them). If the kurtosis of the Type I is
close enough to the kurtosis of the mean, they use Type I, otherwise Type II. The closed-form
solution for Type I is given by:

VBasket(T ) ≈ DF(T )

[
M − K + (K − c)N(Q) − d exp

(
1 − 2ab

2b2

)
N

(
Q − 1

b

)]

where

M =
n∑
i

aiF
T
i

Q = a + b log

(
K − c

d

)
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ω = 1

2
3
√

8 + 4η2 + 4
√

4η2 + η4 + 2

1
2

3
√

8 + 4η2 + 4
√

4η2 + η4
− 1

a = 1/
√

log(ω), b = 1

2
log(ω(ω − 1)/ξ 2), d = sign(η), c = dM − e

(
1

2b
− a)/b

where ξ is the variance, η the skewness and κ the kurtosis.

3 Test results

As the advantage of analytical methods compared to Monte Carlo or numerical integration is of
course speed of computations, we only have to compare the accuracy of the analytical methods
presented in the foregoing section.

We will perform a systematic test by looking at the effect of varying correlations, strikes,
forward and strikes and volatilities. Our standard test example is a call option on a basket with
four stocks and parameters given by

T = 5.0,

DF(T ) = 1.0,

ρij = 0.5 (for i �= j ),

K = 100,

F T
i = 100,

σi = 40% and

wi = 1

4
.

As reference values we compute the prices of all the options below by a Monte Carlo simulation
using the antithetic method and geometric mean as control variate for variance reduction. The
number of simulations was always chosen large enough to keep the standard deviation below 0.05.

We did not test the method of Huynh (1994), because it is an application of the method of
Turnbull and Wakeman (1991) for Asian options (Edgeworth expansion up to the 4th moment)
and it is a well-known problem that this approximation gives really bad results for long maturities
and high volatilities. See also Ju (2002), who pointed out that the Edgeworth expansion diverges
if the approximating random variable is log-normal.

We also tested Curran’s (1994) approximation which computes the price by conditioning on
the geometric mean. But we do not show the numerical results here, because—if we transformed
the forwards to one (simply by multiplying the weights with them)—the prices were exactly the
same as those of Beisser (1999). If we did not transform the forwards to one, Beisser and Curran
gave different prices, but on the other hand Curran’s results were mostly worse. For further reading
we refer to Deelstray et al. (2003) and Beisser (2001) who developed a general framework for
the pricing of baskets and Asian options via conditioning.
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(a) Varying the correlations

Table 1 shows the effect of simultaneously changing all correlations from ρ = ρij = 0.1 to ρ =
0.95. Note that, except for Milevsky and Posner’s reciprocal gamma (MP–RG) and Gentle, all
methods perform reasonably well. Especially for ρ ≥ 0.8, the methods of Beisser, Ju, Levy, the
four moments method of Milevsky and Posner (MP–4M) and Monte Carlo give virtually the
same price.

TABLE 1: VARYING THE CORRELATIONS SIMULTANEOUSLY

Monte

ρ Beisser Gentle Ju Levy MP–RG MP–4M Carlo CV StdDev

0.10 20.12 15.36 21.77 22.06 20.25 21.36 21.62 (0.0319)
0.30 24.21 19.62 25.05 25.17 22.54 24.91 24.97 (0.0249)
0.50 27.63 23.78 28.01 28.05 24.50 27.98 27.97 (0.0187)
0.70 30.62 27.98 30.74 30.75 26.18 30.74 30.72 (0.0123)
0.80 31.99 30.13 32.04 32.04 26.93 32.04 32.03 (0.0087)
0.95 33.92 33.41 33.92 33.92 27.97 33.92 33.92 (0.0024)

Dev.1 0.700 4.013 0.071 0.203 4.119 0.108

Dev. = 1
n

√∑n
i=1(Price − MCPrice)2.

The good performance of Beisser, Ju, Gentle and Levy for high correlations can be explained
as follows: all four methods provide exactly the Black–Scholes prices for the special case that
the number of stocks is one. For high correlations the distribution of the basket is approximately
the sum of the same (for ρ = 1 exactly the same) log-normal distributions, which is indeed
again log-normal. As Levy uses a log-normal distribution with the correct moments, it has to be
a good approximation for these cases. The same argumentation applies for Gentle. If we have
effectively one stock the geometric and the arithmetic average are the same. The bad performance
of MP–RG for high correlations can be explained by the fact that with effectively one stock we
are far away from ‘infinitely’ many stocks, which is the motivation for this method. A test with
fixed correlation ρ12 = 0.95 and varying the remaining correlations symmetrically shows exactly
the same result.

In total the prices calculated by Ju’s approach (whose method slightly overprices) and MP–4M
are overall the closest to the Monte Carlo prices. These approaches are followed by Levy’s and
Beisser’s approximation (whose approach slightly underprices). The other two methods are not
recommendable.

(b) Varying the strikes

With all other parameters set to the default values, the strike K is varied from 50 to 150. Table 2
contains the results.

The differences between the prices calculated by Monte Carlo and the approaches of Ju and
MP–4M are relatively small. The price curves of the method of Gentle and Milevsky and Posner’s
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TABLE 2: VARYING THE STRIKE

Monte

K Beisser Gentle Ju Levy MP–RG MP–4M Carlo CV StdDev

50.00 54.16 51.99 54.31 54.34 51.93 54.35 54.28 (0.0383)
60.00 47.27 44.43 47.48 47.52 44.41 47.50 47.45 (0.0375)
70.00 41.26 37.93 41.52 41.57 38.01 41.53 41.50 (0.0369)
80.00 36.04 32.40 36.36 36.40 32.68 36.34 36.52 (0.0363)
90.00 31.53 27.73 31.88 31.92 28.22 31.86 31.85 (0.0356)

100.00 27.63 23.78 28.01 28.05 24.50 27.98 27.98 (0.0350)
110.00 24.27 20.46 24.67 24.70 21.39 24.63 24.63 (0.0344)
120.00 21.36 17.65 21.77 21.80 18.77 21.73 21.74 (0.0338)
130.00 18.84 15.27 19.26 19.28 16.57 19.22 19.22 (0.0332)
140.00 16.65 13.25 17.07 17.10 14.70 17.04 17.05 (0.0326)
150.00 14.75 11.53 15.17 15.19 13.10 15.14 15.15 (0.0320)

Dev. 0.323 3.746 0.031 0.065 3.038 0.030

reciprocal gamma approach (MP–RG) run almost parallel to the Monte Carlo curve and represent
an underevaluation. The relative and absolute differences of all methods are generally increasing
when K is growing, since the approximation of the real distributions in the tails is getting worse
and the absolute prices are decreasing.

Again, overall Ju’s approximation and MP–4M perform best, while Ju’s slightly overprices.
Levy is the third and Beisser the fourth best.

(c) Varying the forwards and strikes

The forwards on all stocks are now set to the same value F which is varied between 50 and 150
in this set of tests. Table 3 shows that MP–4M and Ju’s method perform excellently, while the
second one again typically slightly overprices. Levy and Beisser’s method also performs well and
Beisser again slightly underprices. The other methods perform worse. These effects can also be
seen if some forwards are fixed and the remaining ones are varied.

(d) Varying the volatilities

The next set of tests involves varying the volatilities σi . We start with the symmetrical situation
at each step, σi is set to the same value σ , which is varied between 5% and 100%.

Table 4 shows the results of the test.
The prices calculated by the different methods are more or less equal for ‘small’ values of

the volatility. They start to diverge at σ ≈ 20%. The Monte Carlo, Beisser, Ju and Levy prices
remain close, whereas the prices calculated by the other methods are too low.

The picture obtained so far completely changes if we have asymmetry in the volatilities, pre-
cisely if there are groups of stocks with high and with low volatilities entering the basket. This is
clearly demonstrated by Figure 1 where we fix σ1 = 5% and vary the remaining volatilities sym-
metrically. This time the prices diverge much more. The method of Levy is massively overpricing
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TABLE 3: VARYING THE FORWARDS SIM. WITH K = 100

Monte

F Beisser Gentle Ju Levy MP–RG MP–4M Carlo CV StdDev

50.00 4.16 3.00 4.34 4.34 3.93 4.33 4.34 (0.0141)
60.00 7.27 5.53 7.51 7.52 6.56 7.50 7.50 (0.0185)
70.00 11.26 8.91 11.55 11.57 9.95 11.53 11.53 (0.0227)
80.00 16.04 13.13 16.37 16.40 14.10 16.34 16.35 (0.0268)
90.00 21.53 18.11 21.89 21.92 18.97 21.86 21.86 (0.0309)

100.00 27.63 23.78 28.01 28.05 24.50 27.98 27.98 (0.0350)
110.00 34.27 30.08 34.66 34.70 30.63 34.63 34.63 (0.0391)
120.00 41.36 36.91 41.75 41.80 37.32 41.73 41.71 (0.0433)
130.00 48.84 44.21 49.23 49.28 44.49 49.21 49.19 (0.0474)
140.00 56.65 51.92 57.04 57.10 52.08 57.03 57.00 (0.0516)
150.00 64.75 59.98 65.13 65.19 60.05 65.14 65.08 (0.0556)

Dev. 0.316 3.989 0.031 0.072 3.516 0.022

TABLE 4: VARYING THE VOLATILITIES SIM. WITH K = 100

Monte

σ Beisser Gentle Ju Levy MP–RG MP–4M Carlo CV StdDev

5% 3.53 3.52 3.53 3.53 3.52 3.53 3.53 (0.0014)
10% 7.04 6.98 7.05 7.05 6.99 7.05 7.05 (0.0042)
15% 10.55 10.33 10.57 10.57 10.36 10.57 10.57 (0.0073)
20% 14.03 13.52 14.08 14.08 13.59 14.08 14.08 (0.0115)
30% 20.91 19.22 21.08 21.09 19.49 21.07 21.07 (0.0237)
40% 27.63 23.78 28.01 28.05 24.50 27.98 27.98 (0.0350)
50% 34.15 27.01 34.84 34.96 28.51 34.73 34.80 (0.0448)
60% 40.41 28.84 41.52 41.78 31.56 41.19 41.44 (0.0327)
70% 46.39 29.30 47.97 48.50 33.72 46.23 47.86 (0.0490)
80% 52.05 28.57 54.09 55.05 35.15 48.39 54.01 (0.0685)

100% 62.32 24.41 64.93 67.24 36.45 47.90 65.31 (0.0996)

Dev. 1.22 16.25 0.12 0.69 11.83 5.53

with all other methods underpricing. We note that Ju’s and Beisser’s method performs best.
Particularly remarkable is the excellent performance of Ju for high volatilities. Since it is a Taylor
expansion around zero volatilities, one would not expect the validity of this expansion far away
from zero.

The same test but now with σ1 = 100% results in Table 5 and Figure 2. Note the extremely
bad performance for Levy’s method for small values of σ which is even outperformed by Gentle’s
method! Beisser is the only one who can deal with this parameter, while both Milevsky’s and
Posner’s methods are also bad.
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Figure 1: Varying the volatilities sim. with σ1 = 5%, K = 100

TABLE 5: VARYING THE VOLATILITIES SIM. WITH σ1 = 100%, K = 100 (FIGURE 2)

Monte
σ Beisser Gentle Ju Levy MP–RG MP–4M Carlo CV StdDev

5.00% 19.45 15.15 35.59 55.46 35.22 18.51 22.65 (0.5594)
10.00% 20.84 16.60 36.19 55.52 35.23 18.64 21.30 (0.3858)
15.00% 22.60 18.08 36.93 55.61 35.24 18.81 22.94 (0.2660)
20.00% 24.69 19.56 37.80 55.71 35.26 19.01 25.24 (0.2124)
30.00% 29.52 22.35 39.97 55.98 35.30 19.42 30.95 (0.1603)
40.00% 34.72 24.73 42.66 56.35 35.36 20.37 36.89 (0.1156)
50.00% 39.96 26.52 45.84 56.89 35.44 20.60 41.72 (0.0894)
60.00% 45.05 27.59 49.39 57.68 35.56 21.72 46.68 (0.0472)
70.00% 49.88 27.87 53.21 58.87 35.72 23.66 51.78 (0.0587)
80.00% 54.39 27.38 57.17 60.70 35.93 27.38 56.61 (0.0742)

100.00% 62.32 24.41 64.93 67.24 36.45 47.90 65.31 (0.0996)

Dev. 1.92 19.18 8.96 22.70 14.48 17.84

(e) Implicit distributions

In addition we plot the implicit distribution of the particular approximations and compare them to
the real ones calculated by Monte Carlo simulation. With implicit distribution we mean that we
derive the underlying distribution of the particular methods by an appropriate portfolio of calls.
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Figure 2: Varying the volatilities sim. with σ1 = 100%,K = 100 (Table 5)

Consider the payoff of the following portfolio consisting only of calls:

�(B(T )) = α ∗
[
PBasket

(
B(T ), L − 1

α
, 1

)
− PBasket(B(T ), L, 1)

−
(

PBasket(B(T ), L + 	L, 1) − PBasket

(
B(T ), L + 	L + 1

α
, 1

)) ]
.

We notice that the payoff �(B(T )) is explicitly given by

�(B(T )) =




0 : B(T ) < L − 1
α

α
[
B(T ) − (L − 1

α
)
]

: L − 1
α

≤ B(T ) ≤ L

1 : L ≤ B(T ) ≤ L + 	L

1 − α [B(T ) − (L + 	L)] : L + 	L ≤ B(T ) ≤ L + 	L + 1
α

0 : B(T ) > L + 	L + 1
α

(3.1)

For α → ∞ it is equal to:

�(B(T )) =




0 : B(T ) < L

1 : L ≤ B(T ) ≤ L + 	L

0 : B(T ) > L + 	L

So for a sufficiently high α the value of our portfolio is approximately the probability that
the price of the basket is at maturity in [L, L + 	L]. To calculate the whole implicit distribution,
we shift the boundaries stepwise by 	L. Instead of applying the underlying distributions, we use
this procedure, because we cannot directly determine the distribution for Beisser’s approximation.
Besides, this procedure seems to be more objective and consistent to compare the approximations.
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We examined the distributions for the test cases (a)–(d). The results confirmed our findings
from the comparison of the prices. For the cases (a)–(c) the implicit distributions of Ju, Levy and
Beisser were consistent with Monte Carlo, and the other ones not. But only Beisser was able to
deal with inhomogeneous volatilities in case (d), where Levy showed massive deviations.

We plot an example with σ1 = 90%, σ2 = σ3 = 50% and σ4 = 10% in Figure 3 to test if there
is some ‘balancing’ effect, i.e. observe that (σ1 + σ4)/2 = σ2. We see there is one except for
Levy’s approach.

We did not plot the graph for the state price density method of Milevsky and Posner, because
it was running into serious problems for small K . The parameter Q is defined as a + b log((K −
c)/d), hence for all K < c the formula of Milevsky and Posner is not well defined (a similar
problem occurs for Type II). But for this parameter set c is around 65, so we simply couldn’t
calculate all necessary prices.
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Figure 3: Densities for the standard scenario with σ1 = 90%, σ2 = σ3 = 50%, σ4 = 10%

So which method to choose? The tests confirm that the approximation of Ju is overall the best
performing method. In addition it has the nice property that it always overprices slightly. Ju’s
method shows only a little weakness in the case of inhomogeneous volatilities, where Beisser is
better. Even though it is based on a Taylor expansion around zero volatilities, it has absolutely
no problems with high volatilities, which is quite contrary to both methods of Milevsky and
Posner.

Beisser’s approximation underprices slightly in all cases. The underpricing of Beisser’s ap-
proach is not surprising since this method is essentially a lower bound on the true option price.
Beisser’s approach is the only method which is reliable in the case of inhomogeneous volatilities.

The performances of Milevsky and Posner’s reciprocal gamma and Gentle’s approach are
mostly poor. A reason for the bad performance of MP–RG may be that the sum of log-normally
distributed random variables is only distributed like the reciprocal gamma distribution as n → ∞.
But as in our case where n = 4 or even in practice with n = 30 we are far away from infinity.
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The geometric mean used in Gentle’s approach also seems to be an inappropriate approximation
for the arithmetic mean. For instance, the geometric mean of the forwards equal to 1, 2, 3 and 4
would be without mean correction 2.21 instead of 2.5. This is corrected, but the variance is still
wrong. The MP–4M four moment method is recommended only for low vols.

The Ju method is the best approximation except for the case of inhomogeneous volatilities.
The reason for this drawback may be that all stocks are ‘thrown’ together on one distribution.
This is quite contrary to Beisser’s approximation, where every single stock keeps a transformed
log-normal distribution and the expected value of every stock is individually evaluated. This is
probably the reason why this method is able to handle the case of inhomogeneous volatilities.

A rule of thumb for a practitioner would be to use Ju’s method for homogeneous volatilities
and Beisser’s for inhomogeneous ones. But then the question occurs, how to define the switch
exactly. So we suggest the following: price the basket with Ju and Beisser; if the relative difference
between the two computed values is less than 5% use Ju’s price for an upper and Beisser’s price
for a lower bound. If it is bigger than 5% run a Monte Carlo simulation or if this is not suitable,
keep the Beisser result (keep in mind that it is only a lower bound for the prices!).
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Pricing CMS Spread
Options and Digital
CMS Spread Options
with Smile
Mourad Berrahoui

1 Introduction
This chapter deals with the smile of spread options in the Black framework. The price of spread
options is sensitive to the entire smile of both underlyings. The classical approach uses the Black
model without smile. For each underlying, the corresponding at-the-money volatility is taken. This
approach ignores the effect of the smile and this is even more of a problem when we deal with
digital options, as in this case there is a smile effect caused directly by the slope of the smile.

In general no closed formula exists for pricing a spread option when the strike is different
to zero. We don’t focus in this chapter on the numerical method. A very detailed survey on the
valuation of spread options is given in Carmona and Durrleman (2003).

Dempster and Hong (2001) propose to use the fast Fourier transform (FFT) with stochastic
volatility and interest rate environments.

Alexander and Scourse (2003) propose to value spread options with a bivariate normal mixture
distribution.

An interesting study has been done, see Cherubini and Luciano (2002), where a non-Gaussian
copula has been proposed to associate the marginal distribution. This copula is calibrated using
historical data.

The aim of this chapter is to develop a simple approach, easy to implement with exogenous
input smile with some application on CMS product.

We start by presenting the current approach used in different banks, then we propose two
different methods to take into account the smile. The first method consists of changing the strike
where the volatility of each underlying is taken and represents only a partial modeling of the
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smile. The second method takes into account the full smile of each underlying and involves
some numerical integration. These two methods are used to show the errors generated by the old
approach. In the last section, we extend the two methods to CMS underlyings, and give some
ideas how to generate an artificial smile using the same approach as above.

2 Notations
The following notations are used throughout this document.

Let’s consider two assets F1 and F2 and an option of maturity T depending on those two
assets. We assume that under the T forward probability, each Fi (i = 1, 2) follows a lognormal
process according to the stochastic differential equation:

dFi(t)

Fi(t)
= µ(Fi(t), t) dt + σi(t) dWi(t) (1)

Correlation between the two assets is represented by the fact that the two standard Brownian
processes in equation (1) satisfy:

E[dW1 · dW2] = ρdt (2)

A spread option also called crack spreads, due to their use in the oil industry, gives the holder
the right to exchange F2 for F1 at expiry. The payoff is:

payoff = Max(Q1F1 − Q2F2 − K; 0) (3)

where Q1 is the quantity of asset F1, Q2 the quantity of asset F2, and K the strike.

3 Current approach without smile

3.1 Spread option with zero strike

When K = 0, a closed-form formula exists (Margrabe 1978). We assume that the drift in equa-
tion (1) is deterministic. The price P of this option is:

P = Q1F1B(0, T )eµ1N(d1) − Q2F2B(0, T )eµ2N(d2) (4)

where

d1 = ln(Q1F1/Q2F2) + (µ1 − µ2 + σ 2/2)T

σ
√

T

d2 = d1 − σ
√

T

µi =
∫ T

0
µi(t) dt; i = 1, 2
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σ =
√

σ 2
1 + σ 2

2 − 2ρσ1σ2

σi =
√

1

T

∫ T

0
σi(t) dt; i = 1, 2

and B(0, T ) is the price of a zero coupon of maturity T .

3.2 Spread option with non-zero strike

Theoretical price of a spread option To calculate the spread option price in the case where
K �= 0, it is necessary to write equations (1) and (2) differently to use only independent Brownian
motions W̃1 and W̃2, as follows:

dF1

F1
= µ1dt + σ1

(
ρdW̃ 1

t +
√

1 − ρ2dW̃ 2
t

)
(5)

dF2

F2
= µ2dt + σ2dW 1

t (6)

The price P is the discounted expectation of payoff (3) under the T forward probability QT where
T is the maturity of the option we want to price:

P = B(0, T ) · EQT
[Max(Q1F1(T ) − Q2F2(T ) − K; 0)] (7)

There is no closed-form formula but two different numerical methods are available to calculate
P : Monte Carlo and semi-analytical.

Monte Carlo approach We simulate the two processes F1 and F2. The price P corresponds to
the mean of (7) over the set of Monte Carlo paths.

Semi-analytical approach Different approaches exist:

• Apply a conditioning technique to turn the two-dimensional integral into a single one
(Ravindran 1993, Shimko 1994)

P = B(0, T ) · EQT
{EQT

[Max(Q1F1(T ) − Q2F2(T ) − K; 0)|F2(T )]} (8)

• Fast Fourier transform (Carr and Madan 1999, Dempster and Hong 2001).

4 New approach with smile
4.1 A simple way to take into account a partial smile

The problem with the formulas presented in the last section in the presence of smile is what
volatility to use for each index. In general, we use the volatility at-the-money for each underlying.

In some special cases it is possible to determine a strike at which to take the volatility of each
underlying rather than the money. Let’s assume that the asset F2 is less volatile. So the spread
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option becomes simply a mono-underlying option and the volatility to use for F1 corresponds to
the strike F2(0) + K . On the other hand, if we suppose that the asset F1 is less volatile, then the
volatility to use for F2 corresponds to the strike F1(0) − K .

On the basis of this reasoning, we propose to use in general:

V ol(F1) = V ol(Strike = AT M(F2) + K)

V ol(F2) = V ol(Strike = AT M(F1) − K)

We will show later how accurate this approximation is in comparison to the habit of using
at-the-money volatility in case of a deeply in/out-of-the-money option.

Just to give an example, imagine that we try to price a spread USD CMS 20Y and USD
Libor 3M at 06/17/2003 (Libor 3M = 1.02%, Swap 20Y = 4.299%) with strike equal to 3.279%
(4.299% − 1.02%). When the option is at-the-money (as is the case at the beginning of the trade),
there is no difference between the two methods. However, when the spread moves, the option
becomes deeply out- or in-the-money and the more convex the smile, the greater the difference
between the two methods. Even if the option was dealt at zero strike, because the smile for the
indexes Libor 3M and CMS 20Y is quite different, the two methods still lead to different prices.

4.2 How to take into account the entire smile
The formula given for the price of a spread option in the previous sections cannot be extended
to calculate a price with smile. For this, we need a more general expression for the price which
does not assume that F1 and F2 follow lognormal distributions. The following formula is true
independently of the distribution of the underlying:

C = B(0, T )

∫ +∞

0
Prob(Q1F1(T ) > x + K, Q2F2(T ) ≤ x) dx (9)

where Prob(. . .) is the bivariate cumulative distribution with correlation equal to ρ.
In order to prove (9), we need the following proposition.

Proposition 1 The spread option payoff is a sum of product of digital options:

Max(Q1F1(T ) − Q2F2(T ) − K; 0) =
∫ +∞

0
1{Q1F1(T )>x+K} · 1{Q2F2(T )≤x}dx (10)

Proof We have just to change the boundary of the integral in (10) by

x < Q1F1(T ) − K

x ≥ Q2F2(T )

(9) is then obtained by taking the expectation of (10).
The integral in (9) can be calculated numerically using simple methods: trapezoidal rule,

Simpson’s rule. . ., or high-order methods: Gauss, Gauss–Kronrod.
All those methods involve approximating (9) in the discrete form:

P = B(0, T ) ·
∑

i

wiProb(Q1F1(T ) > xi + K, Q2F2(T ) ≤ xi) (11)

where wi is a series of quadrature weights.
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We are now faced with the problem of calculating the probability in (11) in the presence of
smile. The probability that one asset is above a fixed strike can be retrieved easily from prices
of call options. Here we need to calculate a bivariate probability. By no arbitrage, we can find
(see Cherubini and Luciano 2002) a lower and upper limit

P 1 − Min(P 1, P 2) ≤ Prob(F1(T ) > x + K, F2(T ) ≤ x)

≤ P 1 − Max(P 1 + P 2 − 1, 0)

with

P 1 = Prob(F1(T ) > x + K)

P 2 = Prob(F1(T ) > x)

These limits represent the financial application of the minimal and maximal copulas of the
Frechet–Hoeffding inequality.

Copulas help us to calculate the bivariate probability knowing the marginal distribution for
each underlying (call spread price), and for that the following assumption is needed:

Gaussian copula assumption

Prob(F1(T ) > x1, F2(T ) ≤ x2|Full smile) (12)

= Prob(F1(T ) > x̃1, F2(T ) ≤ x̃2|σ1 = �1(T , x1)); σ2 = �2(T , x2)))

with x̃1 and x̃2 such that

Prob(F1(T ) > x̃1|σ1 = �1(T , x1)) = Prob(F1(T ) > x1|Full smile) (13)

Prob(F2(T ) > x̃2|σ2 = �2(T , x2)) = Prob(F2(T ) > x2|Full smile) (14)

�1(T , x1) denotes the implied volatility of F1(T ) at strike x1 and �2(T , x2) the implied volatility
of F2(T ) at strike x2.

This assumption means that we are using a Gaussian copula to represent the joint distribution
of the random variables F1(T ) and F2(T ).

The following algorithm, which relies on the Gaussian copula assumption, can then be used
to calculate the price of a spread option with smile as in (11).

Algorithm

• Calculate Prob(F1(T ) > x1|Full smile), i = 1, 2, from the price of a call spread.
• Solve equations (13) and (14) for x̃1 and x̃2.

• Estimate ρ from historical data for F1(t) and F2(t).
• Calculate the joint distribution (normal bivariate) of F1(T ) and F2(T ) using (12).

4.3 Extension to CMS spread options
Introduction If we want to use the model we have proposed above, we need the smile surface for
each underlying. This smile is more or less known in the market when the underlying is the short
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rate (Libor 1M, . . . , 12M). But, when the underlying is CMS, the smile is unknown. One idea is
to use the swaption smile with the swap maturity equal to the tenor of this CMS. Unfortunately
this strategy is not arbitrage free—in theory—particularly when the CMS cap/floor and swap are
liquid. In the last part of this section, we propose an idea to build this smile using the prices of
CMS caps/floors and swaps. To introduce this idea, first we present the issues involved in pricing
CMS products, with a specific section about the timing adjustment necessary for CMS products
with fixings in advance. Then we expose a simple approach, widely used in banks, to price CMS
swaps and caps/floors using the whole smile of swaptions. This approach is based on a simple
idea of replication, which can be used for any complex European payoff.

Issues in pricing CMS products Let us denote SRt the swap rate at time t . Its value at time t

is:

SRt = B(t, T0) − B(t, TN)∑N
i=1 B(t, Ti)τi

The swap starts at time T0 and its payments occur at times Ti(i = 1, . . . , N) with T = T0 < T1 <

. . . < TN .
B(t, Ti) is the price at time t of the bond which pays 1 unit at time Ti .
τi = Ti−Ti−1

365 if SRt is expressed in basis Act/365.
SRt is then a martingale (i.e. a driftless process) under the numeraire SMT defined as:

SMT =
N∑

i=1

B(T , Ti)τi

Prices of FRAs and caplets are given by:

FRA(t) = B(t, T ) · EQT
[SRT |Ft ]

Caplet(t) = B(t, T ) · EQT
[Max(SRT − K; 0)|Ft ]

QT denotes the T forward measure. Under this measure, SRt is not driftless and it is difficult to
calculate its drift.

The price of a physical swaption is given by:

Swaption(t) = ESMT
[Max(SRT − K, 0)|Ft ] ·

N∑
i=1

B(t, Ti)τi

where ESMT
denotes the expectation with respect to numeraire SMT .

We can apply the Black formula in this case, because SRt is driftless.
From this short analysis, we can see that if we can express the payoff of FRAs/caps in terms

of the payoff of the swaption, then pricing becomes simple. It is the idea of the replication, which
we develop now.

Note that in order to price a cash swaption, which is a more common product than physical
swaptions, one has to use instead of the physical swap measure, the cash swap measure where
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the numeraire is:

SCashMt =
N∑

i=0

1

(1 + SRT )i

Replication of simple products on CMS In this section we develop the idea of replicating
the payoff of a CMS swap or cap as a linear combination of swaptions with different strikes.
In addition to the mathematical argument of easy derivation given in the last section, another
motivation for doing this is that the only simple and liquid way to hedge a product on CMS is to
use swaptions.

We want to write a linear payoff (swap/cap/floor) of the form:

Max(SRT − K; 0)

in terms of a non-linear payoff (swaption with cash settlement) of the form:

Max(SRT − K; 0) ·
N∑

i=1

1

(1 + SRT )i

So the idea is to find a set of weights wj and strikes Kj such that:

Max(SRT − K; 0) =
∑

j

wj Max(SRT − Kj ; 0) ·
N∑

i=1

1

(1 + SRT )i
(15)

We choose the strikes Kj to be equally spaced, using a discretization step �. So we have:

Kj = K + j�; j = 1, . . . , M

In our experience, � = 5 to 10 basis points is a good choice and M can be chosen so that K

is about 15%, but it really depends to what limit of strike the trader wants to hedge its CMS
products.

The calculus of the weight wj is straightforward.

Timing adjustment for CMS products with fixings in advance We have seen that the replication
technique is based on swaptions with cash settlement, so it can only be used to price CMS products
in which the swap rate is observed and paid at the same time. When we deal with CMS products
with fixings in advance, e.g. CMS vanilla caps/floors/swaps, the price has to be adjusted.

If the swap rate is observed at time T and paid at T + δ, the forward swap rate SR0 has to
be corrected by a timing adjustment (see Hull 2002):

−SR0δR0ρσσRT

1 + R0δ

where R0 is the value at time zero of the forward rate between T and T + δ, σR is the volatility of
this forward rate, σ is the at-the-money volatility of the forward swap rate and ρ is the correlation
between the forward swap rate and the forward rate.
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Example Let’s take the example given by Hull (2002).

SR0 = 5%

R0 = 5%

σ = 15%

σR = 20%

δ = 0.5

ρ = 0.7

The forward rate has to be adjusted by −0.0000256T .

Building CMS smile by arbitrage The process SRT can be written under the T -forward measure
as follows:

SRT = EQT
[SRT ] exp

(
−1

2
σ 2T + σWT

)
(16)

The application of the replication technique for FRAs gives the expectation value EQT
[SRT ] of

SRT under the T -forward measure as:

EQT
[SRT ] = FRA

B(0, T )

The price of the caplet/floorlet with strike K using the expression (16) of the process SRT is
simply given by Black’s formula:

Caplet = Black (EQT [SRT ], σ (K), T , K)

The unknown variable in this formula is the volatility σ(K). At the same time this price can be
obtained using the replication technique described above. Hence we can imply the volatility σ(K)

by:

σ(K) = Black−1(Caplet)

We can apply this technique for every strike K and thus we build the CMS smile.
We admit that it can be time consuming. At the first approximation we can take the swaption

smile.

5 Tests

5.1 Introduction

We first show the difference in price for short rate spread options (Libor 6M–Libor 3M), for
given market data: yield curve and smile, with the three methods:
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• The approach with taking at-the-money volatility for each index.
• The same approach but with taking as strike for one index, the money for the second

index plus/minus the strike of the spread option.
• Pricing with full smile as described in this chapter.

Then we do similar tests on CMS products.
In all our tests, we use the following features:

• Payment frequency: 6M
• Day count: ACT/360
• Yield curve:

ATM swap rate

1Y 1.14%
2Y 1.55%
5Y 2.63%
7Y 3.12%
10Y 3.61%
15Y 4.12%
20Y 4.36%

• Volatility surface:

3% 4% 5% 6% 7% 8% 9%

1Y 26.50 21.90 23.30 25.50 26.70 27.80 29.10
2Y 25.80 20.30 19.10 21.30 22.70 23.80 25.20
5Y 23.90 19.50 15.50 15.00 15.60 16.40 17.60
7Y 22.70 18.70 14.80 13.30 13.40 14.00 14.70
10Y 21.50 17.90 14.10 12.10 12.10 12.60 13.10
15Y 20.20 17.00 13.50 11.20 10.90 11.30 11.60
20Y 19.30 16.40 13.10 10.60 10.30 10.70 11.00

5.2 Short rate spread option
We consider a spread option Libor 6M–Libor 3M. First, we consider strike zero and volatility
flat. We compare the Margrabe closed-form formula (without smile), the Monte Carlo approach
(partial smile), and the full smile method.

Libor 6M = 0.99%

Libor 3M = 0.95%

From Table 1, we check that our model gives the same results as Margrabe’s formula in the
case where the volatility is flat, for different maturities.

The small difference can be due to the numeric integration method used in our implementation.
Now, we consider the same option but with smiled volatility. We notice that the difference

becomes significant when the maturity increases.
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TABLE 1: STRIKE = 0, VOLATILITY IS FLAT AT 20%,
CORRELATION = 0.7

Margrabe formula MC method (10 000 path) Full smile

1Y 9 9 9
2Y 32 32 32
5Y 153 153 153
7Y 275 275 275
10Y 484 483 483
15Y 854 852 853
20Y 1181 1177 1176

TABLE 2: STRIKE = 0,
VOLATILITY WITH SMILE,
CORRELATION = 0.7

Margrabe Full smile

1Y 12 12
2Y 42 41
5Y 176 170
7Y 278 275
10Y 436 436
15Y 665 690
20Y 860 901

TABLE 3: STRIKE = 0.20%, VOLATILITY WITH
SMILE, CORRELATION = 0.7

Margrabe Our approach (in basis points)

1Y 4 4
2Y 24 23
5Y 131 126
7Y 217 216
10Y 347 356
15Y 552 583
20Y 725 773

5.3 Building CMS smile surface

We compare the swaption volatility smile (for 10Y fixed swap maturity) with the CMS 10Y, after
building the CMS smile as described in this chapter.

In general the CMS smile is less than the swaption smile with the same swap maturity.
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TABLE 4: SMILE CMS 10Y (VOLCMS10Y–VOLSWAPTION NX10Y)

3% 4% 5% 6% 7% 8% 9%

1Y −0.2 0.1 0.3 0.3 0.4 0.5 0.6
2Y −0.4 −0.1 0.3 0.5 0.6 0.7 0.8
5Y −0.8 −0.5 −0.2 0.1 0.4 0.5 0.6
7Y −0.9 −0.7 −0.4 −0.1 0.1 0.2 0.3
10Y −0.9 −0.8 −0.5 −0.2 0.1 0.2 0.2
20Y −0.9 −0.9 −0.7 −0.4 −0.1 −0.1 0.1

5.4 Impact of smile in CMS spread option

We consider the spread option on CMS 20Y and CMS 2Y with strike equal to 2.5% (in but not
far from the money).

The first column gives the price of the spread option priced with the volatility at-the-money
for each index and the second column with partial smile. The third column shows the price with
full smile. In the first two columns, the price is calculated with Monte Carlo.

TABLE 5: SPREAD OPTION ON CMS 20Y AND CMS 2Y
WITH STRIKE = 2.50% AND CORRELATION = 0.7

Vol at-the-money Partial smile Full smile

1Y 47 46 47
2Y 79 80 84
5Y 139 155 166
7Y 170 194 210
10Y 211 250 269
15Y 273 334 351
20Y 339 415 428

It is clear from Table 5 that the model with partial smile is closer to the full smile model than
the classical approach without smile.

Those differences depend on

• the convexity of the smile

• how far the strike of the spread option is from the money.

5.5 Impact of smile in digital CMS

We approximate a digital option as a call spread with a strike shift equal to 10 basis points. We
compare the same three models again.

The graphs below show the differences between the prices with the different models as pre-
sented in the tables.
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TABLE 6: CALL DIGITAL OPTION ON CMS 20Y AND CMS
2Y WITH STRIKE = 1.50% AND CORRELATION = 0.7

Vol at-the-money Partial smile Full smile

1Y 98 98 98
2Y 179 180 176
5Y 320 309 308
7Y 378 361 363
10Y 441 417 421
15Y 508 478 484
20Y 559 528 527

Difference partial/without smile and full smile methods
(strike = 1.5%)
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Difference partial/without smile and full smile methods
(strike = 3.5%)
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These graphs show that taking the volatility at the right strike (partial smile) gives closer prices
to the full smile method especially when the option is deeply in- or-at-the-money.

For digital option at-the-money, the differences between the two models, however, are
significant.

6 Conclusions
In this chapter we have exposed two new methods to take into account the smile for spread
options and in particular digital spread options.

The most advanced of those two methods is a numerical integration method based on a copula
assumption, which uses the entire smile of each underlying.

If the smile is not smooth enough, this method can lead to instabilities. This is why, when
this situation occurs, a parameterization of the smile and then using a closed-form formula for
Prob(Fi,t > xi ; smile(Fi,t )) could be a worthwhile alternative. For a digital option, in this case
one needs to consider:

dC

dK

∣∣∣∣
K=K0

= ∂C

∂K

∣∣∣∣
K=K0

+ ∂C

∂σ

∣∣∣∣
K=K0

∗ dσ

dK

∣∣∣∣
K=K0

(17)

where C(K, σ (K)) is the call option price and σ(K) is a parametric volatility function (Example:
SABR model).

Another method which we propose is to price spread options taking the volatility at a different
strike than the money of each underlying the same time, as follows:

V ol(F1) = V ol(Strike = AT M(F2) + K)

V ol(F2) = V ol(Strike = AT M(F1) − K)

This method is only a partial smile model but we show that it is close to the first, full smile, method.
A separate section of this chapter is dedicated to dealing with CMS underlyings and building

the CMS smile.
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The Case for Time
Homogeneity
Philippe Henrotte

Departure from time homogeneity may be the sign of serious modelling deficiency.
We show with three important examples that it is possible to calibrate parsimonious
time homogeneous models to complex term structures. Our examples include the
volatility smile, the credit spread, and the yield curve.

1 Introduction
We explore a simple yet significant modelling issue in finance. In many situations where market
prices display a term structure, it seems natural to resort to some time dependent dynamics if one
wishes to calibrate a model to the observed market data. We argue that this is almost always a bad
idea, a sign that some important underlying stochastic structure has been missed at the modelling
stage.

When a simple model fails to capture some economically meaningful pattern, tweaking a few
parameters through time is a dangerous way of getting extra mileage out of an exhausted solution,
even if this adjustment yields an excellent calibration. For calibration alone should not measure
the quality of a model. Adjusting a few parameters through time for the sake of calibration
alone almost always implies crazy future scenarios, which, although not theoretically impossible,
nevertheless look often extremely awkward. As a result, tweaked models typically lack robustness
and time consistency.

Stability can only be achieved once the salient features of the dynamics of the problem are
correctly captured, and this implies in turn a careful description of the underlying state variables.
Achieving a good calibration with a time homogenous model is a powerful sign that the stochastic
structure of the problem has been correctly formulated. The term structure that we wish to calibrate,
like the motion of planets in space, is a complex function of time which may be described by many
different time inhomogeneous ad hoc theories. A time homogeneous model in finance resembles
the law of gravity in physics. It yields a parsimonious explanation where time does not play

Contact address: HEC School of Management, ITO33 SA, 39 rue L’homond, 75005 Paris, France.
E-mail: NewNumberTwo@ito33.com
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a direct role. This feat is achieved at the cost of enlarging the state space, by considering for
instance speed and acceleration as additional state variables on top of the position in space.

Increasing the dimension of the state space may prove fatal for the numerical tractability of
the model. The brute force solution which consists for instance of replacing every time dependent
parameter by a general time homogeneous stochastic process is probably doomed to fail. We
search instead for a parsimonious solution, the smallest possible state space on which a time
homogeneous dynamics can be written with good calibration properties. It would be foolish
to push the analogy with physics too far and claim that we would then have discovered some
universal law for finance similar to gravitation. Our goal is merely to seek robustness and stability
under the constraint of numerical tractability. The objective of this chapter is to point out that
this research agenda deserves serious consideration.

We show that in many situations, the increase in the complexity of the state space may be
limited to the addition of an abstract regime variable which only assumes a small number of
states. We investigate three financial environments where the analysis of a term structure is of
the essence: the implied volatility smile, the term structure of credit spread, and the yield curve.
In each case we obtain encouraging calibration results, and the added difficulty of working with
a larger state space is more than offset by the benefits brought by time homogeneity.

2 The implied volatility smile
The implied volatility schedule of at-the-money calls as a function of maturity is a first important
example of term structure in finance. It is well known that a simple tweak to the standard time
homogeneous Black–Scholes model will do the job: by allowing the volatility parameter to be a
function of time, any term structure can be recovered. If one wishes to fit an entire smile schedule
across maturity and strike price, this trick can be extended to a so-called local volatility by letting
the volatility be a function of time and spot price. Anyone who ventures down this avenue knows
that the journey ends in a bitter numerical fiasco. The seemingly natural extension is in fact all
but natural. It lacks robustness, yields chaotic predictions for future smile patterns, and generates
hedges and prices for exotic instruments way out of line with market practices. One could hardly
paint a gloomier picture.

The good and somewhat surprising news is that one need not introduce a very sophisticated
state space in order to recover time homogeneity. Tables 1, 2 and 3 show that a few regimes with
a simple time homogeneous Markov structure are enough to capture the jumps and the stochastic
volatility needed to calibrate not only to an entire vanilla option smile schedule, but also to some
key liquid exotic instruments such as digital or forward start options.1 Whereas the vanilla option
prices are used for the implied volatility smile calibration, a few liquid exotic instruments help
capture the dynamics of the smile. The simple tweak to the Black–Scholes volatility fails so
miserably because it cannot capture the smile dynamics, as reflected in the prices of the exotic
instruments.

The bad news is that by extending, even a little, the state space, the markets are no longer
complete. This means that the perfect delta hedge, the cornerstone of the Black and Scholes
analysis, is lost and the heavy machinery of incomplete markets must be brought to bear if one
is to derive meaningful dynamic hedging strategies.
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TABLE 1: CALIBRATED PARAMETERS OF THE
REGIME-SWITCHING MODEL (3 REGIMES)

Brownian diffusion Total volatility

Regime 1 9.57% 11.67%
Regime 2 6.24% 32.23%
Regime 3 2.25% 11.88%

Jump size Jump intensity

Regime 1 → Regime 2 −9.07% 0.2370
Regime 2 → Regime 1 62.67% 0.0855
Regime 1 → Regime 3 2.72% 3.3951
Regime 3 → Regime 1 −3.17% 2.9777
Regime 2 → Regime 3 24.63% 1.0944
Regime 3 → Regime 2 −22.66% 0.2040

3 The term structure of credit spread
A second example of term structure is the schedule of credit spread of an issuer as a function
of maturity. This topic is attracting a lot of attention today with the development of the equity
to credit paradigm. Insurance instruments such as credit default swaps are becoming liquid for
maturities up to five or ten years. In reduced form models, the term structure of credit spreads
is often captured by a default intensity parameter which is assumed to be a function of time and
spot. One immediately sees the parallel with the local volatility. Tweaking the default intensity
does the job and yields simple numerical procedures. But this is achieved at the cost of hiding
the stochastic structure of the default process. The term structure contains some key information
about this structure which is revealed in a time homogeneous framework with a few constant
parameters.

Calibrating a slightly more complex model with constant parameters reveals far more of the
underlying stochastic nature of the problem than resorting to a seemingly simpler model with
fewer parameters which must be tweaked every period. Tables 4, 5 and Figure 1 show that a
simple model with two or three regimes and a time homogeneous Markov structure captures quite
nicely most credit spread patterns, even for relatively long maturities.

4 The yield curve
A third obvious example of term structure in finance is the yield curve. Two major modelling
schools have emerged, which differ in the way they describe the state variable. One school
lets the state variable be the short-term interest rate while the other one uses the entire yield
curve.
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TABLE 4: CALIBRATED PARAMETERS OF A TIME-HOMOGENEOUS
REGIME-SWITCHING MODEL (TWO REGIMES ONLY)

Hazard rate

Regime 1 0.15%
Regime 2 7.15%

Jump intensity

Regime 1 → Regime 2 0.7400
Regime 2 → Regime 1 0.1270

TABLE 5: QUALITY OF FIT OF THE TERM STRUCTURE
OF SPREADS OF CREDIT DEFAULT SWAPS WITH TWO
REGIMES IN A REGIME-SWITCHING MODEL

Maturity (years) Recovery rate Market Model

1 0.45 1.08% 1.16%
2 0.45 1.72% 1.78%
3 0.45 2.10% 2.14%
5 0.45 2.65% 2.53%
7 0.45 2.73% 2.72%

10 0.45 2.79% 2.86%
15 0.45 3.00% 2.96%

Source: General Motors 30/09/2003
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Figure 1: Quality of fit of the term structure of spreads of credit
default swaps
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The ability to fit a given initial yield curve is a major modelling requirement. For the short-
term interest rate school, this is achieved by arm twisting the parameters of the short-term rate
process through time so as to generate the desired yield curve. The second school avoids such
painful contortion since the yield curve is viewed as an input, a parameter of the model which
need not be calibrated. The main drawback here is that any information on the stochastic structure
of the problem which may be contained in the shape of the yield curve is lost.

For both schools, producing a simple time homogeneous model of the yield curve seems a
remote and lost cause. This is a very unfortunate outcome, probably dictated by a more sombre
agenda: the need to produce quasi closed form pricing solutions, or at least elementary numerical
procedures such as one-dimensional trees.

It is instructing to realize that a very simple time homogeneous process with no more than
three abstract regimes can fit reasonably well almost any yield curve together with the prices of
a few interest rate derivatives (see Tables 6, 7, 8, 9 and Figures 2 and 3). Such a model must
be solved numerically, but the state variable is so parsimonious that calibration need not be a
nightmare.

TABLE 6: CALIBRATED PARAMETERS OF A TIME HOMOGENEOUS
REGIME-SWITCHING MODEL (3 REGIMES) NOVEMBER 1995

Short rate

Regime 1 5.417%
Regime 2 10.930%
Regime 3 2.626%

Jump intensity

Regime 1 → Regime 2 0.0402
Regime 2 → Regime 1 0.0783
Regime 1 → Regime 3 0.1903
Regime 3 → Regime 1 0.1005
Regime 2 → Regime 3 0.1574
Regime 3 → Regime 2 0.2615

TABLE 7: QUALITY OF FIT OF THE
YIELD CURVE USING THREE REGIMES
IN A REGIME-SWITCHING MODEL

Maturity (years) Market Model

0.25 5.410% 5.383%
0.5 5.333% 5.357%
1 5.311% 5.324%
2 5.322% 5.316%
5 5.495% 5.486%

10 5.798% 5.802%

Source: US Government zero coupon yield curves,
November 1995
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TABLE 8: CALIBRATED PARAMETERS OF A TIME HOMOGENEOUS
REGIME-SWITCHING MODEL (3 REGIMES) OCTOBER 1978

Short rate

Regime 1 7.388%
Regime 2 0.400%
Regime 3 22.753%

Jump intensity

Regime 1 → Regime 2 0.6996
Regime 2 → Regime 1 0.5556
Regime 1 → Regime 3 1.5346
Regime 3 → Regime 1 0.4503
Regime 2 → Regime 3 0.7516
Regime 3 → Regime 2 1.6144

TABLE 9: QUALITY OF FIT OF THE
YIELD CURVE USING THREE REGIMES
IN A REGIME-SWITCHING MODEL

Maturity (years) Market Model

0.25 8.937% 8.933%
0.5 9.503% 9.513%
1 9.657% 9.640%
2 9.246% 9.261%
5 8.826% 8.819%

10 8.662% 8.664%

Source: US Government zero coupon yield curves, October
1978
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5 Conclusion
We have made the case for parsimonious time homogeneous models as a powerful way to decipher
the stochastic structure underlying a complex collection of market data. In some instances, an event
announced for a specific date will destroy the time homogeneity and there are situations where
time should indeed be considered as a state variable after all. These cases should be treated as
exceptions and not as the rule. We conclude with a simple sanity check for a financial model:
any departure from time homogeneity should be the cause of great concern and should therefore
be strongly motivated, lest it is the sign of some serious modelling deficiency.

FOOTNOTE

1. See E. Ayache, P. Henrotte, S. Nassar, and X. Wang. Can anyone olve the smile problem?
Wilmott, January 2004.
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Hybrid Stochastic
Volatility Calibration
Domingo Tavella,*Alexander Giese∗∗ and
Didier Vermeiren∗∗

We present a hybrid stochastic volatility model which improves the calibration to
spot implied volatilities over a wide range of maturities and strikes, while at the same
time preserving the desirable properties of the purely stochastic volatility model. This
hybrid stochastic volatility model is obtained by superposing a (small) local volatility
component to a (dominant) stochastic volatility component. We illustrate this approach
by combining the constant parameter Heston model with a parametric local volatility
model. Results based on realistic market data indicate that this combination effectively
extends the ability of the Heston model to calibrate to a larger range of maturities
and strikes.

1 Introduction

A hybrid stochastic volatility model consists of a combination of a stochastic volatility model
with a local volatility component. We can construct a hybrid model by choosing an appropriate
stochastic volatility process, such as in the Heston model, and creating the instantaneous hybrid
volatility as a weighted sum of the spot-independent stochastic volatility and of a spot-dependent
local volatility. Depending on the proportions of the stochastic and local volatility components, the
properties of a hybrid model will be a compromise between the properties of a purely stochastic
volatility model and those of a purely local volatility model.

For an asset process given by:

dS

S
= r dt + σ(S, t) dW1 (1)

Contact address: ∗Octanti Associates Inc., San Francisco, USA.
∗∗HypoVereinsbank, Quantitative Research & Structuring, Arabellastr. 12, D-81925 Munich.
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we define the instantaneous hybrid volatility σ(S, t) as the superposition of stochastic and local
components, σSV and σLV , respectively:

σ(S, t) = σSV (t)η + σLV (S, t)(1 − η) (2)

where η denotes the fraction of the stochastic volatility component in the instantaneous hybrid
volatility.

The stochastic volatility component follows a process given by:

dσSV = a(σSV , t) dt + b(σSV , t) dW2 (3)

where W1 and W2 are correlated standard Wiener processes.
The local volatility component is a suitably parameterized function of the asset spot and time:

σLV = f (S, t; λ1(t), ..., λn(t)) (4)

where the λi are time-dependent parameters.
Why would we want to consider such a hybrid volatility model? To appreciate this, we first

summarize the main features and limitations of both stochastic and local volatility models.
Local volatility models are able to fit perfectly (at least in theory, Dupire 1994) a given implied

volatility surface over its full range of strikes and maturities. However, its main limitations arise
from the fact that, as maturity increases, forward starting smiles flatten out as a function of
maturity (Andersen and Andreasen 1999). This behavior does not correspond to the market rule
of thumb that the forward smile is more or less stationary in time.

This effect of maturity on the forward smiles is improved using stochastic volatility mod-
els. There are, however, practical limitations about the type of process that stochastic volatility
models can follow. Practicality of computation dictates that acceptable candidates for stochastic
volatility models should be Markovian. If this is not the case both analytical tools and effective
computational techniques, such as finite differences, are no longer applicable to the calibration
process.

Stochastic volatility models with constant parameters lack the time scales necessary to accom-
modate the change in the time dimension observed in market implied volatility surfaces. This
means that stochastic volatility models with constant parameters can in general be calibrated to
medium- and long-term maturities, but encounter problems fitting the short-term implied volatility
smile.

One way to address this issue is to construct a hybrid stochastic volatility model by combining
a standard stochastic volatility model with a local volatility component. This has been done in a
multiplicative manner by Blacher (2001) and by Lipton (2002). The instantaneous hybrid volatility
in this case takes the following form:

σ(S, t) = σSV (t)σLV (S, t) (5)

However, with this particular form, it is not possible to separate the influence of the stochastic
component from the local component in an intuitive manner. This is the reason why we prefer
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to define the instantaneous hybrid volatility as a weighted sum of a stochastic component and a
local component:

σ(S, t) = σSV (t)η + σLV (S, t)(1 − η) (6)

Such a hybrid model is particularly interesting when a small local volatility component is
sufficient to insure a proper fit of the market implied volatility surface for all maturities and
strikes while the desirable properties of the dominant stochastic component are preserved.

In what follows we take the Heston model, one of the most popular stochastic volatility models,
as the basis for constructing a hybrid model (Heston 1993).

2 Model framework
The hybrid calibration requires a very efficient solution for pricing vanilla call options. We
achieved this through the numerical solution via finite differences of the two-dimensional
Fokker–Plank equation (FPE) for the joint probability density of the asset and volatility states.
Using the numerically computed solutions of the FPE, it is straightforward to compute the value
of vanilla calls and, through the use of an optimizer, adjust the parameters of the model until a
sufficiently good fit is obtained.

In the case of the Heston model combined with local volatility, it is much easier to solve
the FPE numerically when the Heston process is expressed in terms of log variance. Our hybrid
model is given by:

dS

S
= r dt + [(1 − η)σLV + ησSV ] dW1 (7)

d log σ 2
SV = 1

σ 2
SV

(
k(θ − σ 2

SV ) − 1

2
φ2

)
dt + φ

σSV

dW2 (8)

The second equation is the logarithmic transformation of the standard Heston model:

dσ 2
SV = k(θ − σ 2

SV ) dt + φσSV dW2 (9)

The local volatility function, σLV (S, t), is defined as follows:

σLV (S, t) = λ0(t) + λ1(t) log

(
S

S0

)
+ λ2(t) log2

(
S

S0

)
(10)

where S0 is the current spot asset price, and λ0(t), λ1(t), and λ2(t) are piecewise linear continuous
functions.

The joint probability density p(S, log σ 2
SV , t) of these processes is given by the two-dimensional

forward FPE:

∂p

∂t
= −∂µ1p

∂S
− ∂µ2p

∂ log σ 2
SV

+ 1

2

∂2p

∂ log σ 2
SV

2 + ∂2ρσ1σ2p

∂S∂ log σ 2
SV

+ 1

2

∂2σ 2
2 p

∂S2
(11)
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where ρ is the correlation coefficient between W1 and W2, µ1 = r ,
µ2 = 1

σ 2
SV

(
k(θ − σ 2

SV ) − 1
2φ2

)
, σ1 = (1 − η)σLV + ησSV , and σ2 = φ

σSV
.

We solve this equation numerically subject to the initial condition:

p(S, log σ 2
SV , 0) = δ(S − S0, log σ 2

SV − log σ 2
SV0

) (12)

where σSV0 is the current spot stochastic volatility component.

3 Calibration considerations
The calibration strategy for the hybrid model consists of two stages. In the first stage, you select
appropriate parameters for the basic stochastic volatility model. If you select these parameters
such that the medium- and long-term maturity market smiles are captured as tightly as possible,
the local volatility will be a thin layer superimposed to the basic stochastic volatility. The purpose
of the local volatility layer is then simply to enable tighter calibration over the entire range of
maturities, especially for short-term maturities.

In the second stage, the full FPE numerical solution is used to calibrate the local volatility
component with respect to the functions λ0(t), λ1(t), and λ2(t), for all maturities.

The finite difference solution of the two-dimensional FPE is accomplished with an ADI scheme
and requires careful attention to boundary conditions, aliasing, and oscillation issues.

Very accurate calibrations can be obtained with maturities of up to five years by using a high-
resolution finite difference grid and carefully selecting resolution and computational parameters
to avoid aliasing and oscillatory behavior.

In what follows, we selected the Heston parameters to be k = 0.86, θ = 0.03, φ = 0.2, and
the correlation between spot and stochastic volatility returns equal to −0.5. We chose the fraction
of the stochastic volatility component to be 90%.

Figure 1 shows the market implied volatility surface used in this case. It is fundamentally
impossible to conduct a satisfactory Heston calibration to this entire surface. The hybrid model,
however, allows for very tight calibrations over the full range of strikes and maturities included
in the data.

Figure 2 compares the 0 to 0.5-year market spot smile with the implied volatility smiles
generated by the hybrid and the purely local volatility model. Notice that there is a very close
agreement between all three.

Figure 3 shows the 0.5 to 1-year forward smiles. Both models produce very similar results.
This is consistent with the assumption that for short-term maturities, it is the time scales of the
market data that determine the shape of the forward smiles, not the dynamics of the calibrated
model. In other words, for short time horizons, if you were able to fully calibrate a stochastic
volatility model you should expect the resulting forward smiles to be very close to the ones you
would derive from a purely local volatility model.

Figure 4 shows the 1.5 to 2-year forward smile. We can see an incipient flattening of the smile
as captured by the purely local volatility model compared with the hybrid model.

Figures 5 and 6 show the 4.0 to 4.5- and the 4.5 to 5-year smiles. For these maturities, we
observe even flatter forward smiles generated by the purely local volatility model, and more
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and hybrid smiles

convex forward smiles generated by the hybrid model, in comparison with today’s smile. More
convex forward smiles are typical of purely stochastic volatility models (Bergomi 2004).

4 Conclusions
Calibration of constant parameter stochastic volatility models to a narrow window of a given
market implied volatility surface is straightforward, but it is usually not possible to extend the
calibration to the entire strike and maturity range in a satisfactory manner.
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local volatility models
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Figure 4: Forward 1.5 to 2-year smiles from hybrid and
local volatility models

To address this issue, we proposed a hybrid model consisting of a superposition of a stochastic
and a local volatility model. As an example of such a hybrid model, we selected a combination
of the Heston model and a parametric local volatility model. The calibration errors obtained with
the constructed hybrid model were significantly smaller than those obtained with a pure Heston
model when calibrated to realistic market data. The analysis of forward smiles revealed that the
hybrid model with a dominant stochastic component preserves the forward smile dynamics of a
purely stochastic volatility model, in particular it does not induce a flattening of the forward smile
as in a purely local volatility model.
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local volatility models
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Can Anyone Solve the
Smile Problem?
Elie Ayache,* Philippe Henrotte,∗∗ Sonia Nassar†

and Xuewen Wang‡

One of the most debated problems in the option smile literature today is the so-called
‘smile dynamics’. It is the key both to the consistent pricing of exotic options and to
the consistent hedging of all options, including the vanillas. Smiles models (e.g. local
volatility, jump-diffusion, stochastic volatility, etc.) may agree on the vanilla prices
and totally disagree on the exotic prices and the hedging strategies. Smile dynamics
are heuristically classified as ‘sticky-delta’ at one extreme, and ‘sticky-strike’ at the
other, and the classification of models follows accordingly. The real question this
distinction is hinging upon, however, is space homogeneity vs inhomogeneity. Local
volatility models are inhomogeneous. The simplest stochastic volatility models are
homogeneous. To be able to control the smile dynamics in stochastic volatility mod-
els, some authors have reintroduced some degree of inhomogeneity, or even worse,
have proposed ‘mixtures’ of models. We show that this is not indispensable and that
spot homogeneous models can reproduce any given smile dynamics, provided a step
is taken into incomplete markets and the true variable ruling smile dynamics is rec-
ognized. We conclude with a general reflection on the smile problem and whether it
can be solved.

1 Introduction
The smile problem has raised immense interest among practitioners and academics. Since the
market crash in October 1987, the volatilities implied by the market prices of traded vanillas have
been varying with strike and maturity, revealing inconsistency with the Black–Scholes (1973)
model which assumes a constant volatility. Ever since, a multitude of volatility smile models
have been developed. The earliest of the volatility models were the local volatility models.1 They

Contact address: ITO33 SA, 39 rue L’homond, 75005 Paris, France.
Email: ∗NumberSix@ito33.com, ∗∗NewNumberTwo@ito33.com, †Sonia@ito33.com, ‡Wang@ito33.com.
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inferred a volatility dependent on the stock price level and time that accommodates the market
price of vanillas within the Black–Scholes framework (Dupire 1994, Derman and Kani 1994,
Rubinstein 1994). Indeed, local volatility models postulate that the underlying follows a lognormal
diffusion process equation

dS

S
= π(t) dt + σ (S, t) dW

yielding the following partial differential equation (PDE) for derivative instruments:

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
+ r(t)S

∂V

∂S
= r(t)V

They are so to speak an extension of the Black–Scholes lognormal diffusion process with con-
stant volatility to a process where the volatility is dependent on both the share price level and
time. Under these assumptions, the unique local volatility surface is backed out through forward
induction from the smile of vanilla option prices. Once the local volatility surface is known, it
is used to value and hedge any type of option on the same underlying. The implied volatility
of an option with a given strike and a given maturity can be seen as an average over all local
volatilities that the underlying may have as time evolves until the maturity date. Local volatility
models accommodate the smile and are theoretically self-consistent as it is possible to hedge and
as a matter of fact perfectly replicate options in order to price them, as done in the Black–Scholes
framework. In other words, they retain the market completeness.

Unfortunately, as shown in Figure 2, the shape of the local volatility surface, inferred from the
market vanilla smile represented in Figure 1, may sometimes look very surprising and unintuitive,
with no easily explainable trend either along the underlying share price direction or in the time
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direction. For instance, far in the future, local volatilities are roughly constant, i.e. the model
predicts a flattening of the smile, which seems inconsistent with the omnipresence of the skew or
smile observed for the last 15 years. Not mentioning the numerical efforts in order to interpolate
and extrapolate the sparse empirical smile data, then to smooth the surfaces of interest. This is
computationally known as an ‘ill-posed inverse problem’.

2 Is the local volatility model really a model?

2.1 The sirens of ‘tweaking’

When you think about it, the local volatility models just provide numerical methods for find-
ing a volatility surface σ(S, t) that fits the market data of the options, C(K, T ), by exploiting
the mechanics of the pricing equations or the PDEs. To our mind, they do not really provide
a (physical) explanation of the smile phenomenon. Dupire has not discovered a smile model.
His great discovery was the forward PDE for pricing vanilla options of different strikes and
different maturities in one solve. Tweaking the diffusion coefficient in the Black–Scholes PDE
in order to match a given set of vanilla option prices is reminiscent of the method of ‘epicy-
cles’ which was the only way to account for the movement of celestial bodies when the real
scientific explanation was lacking. (See Henrotte 2004 for a defence of homogeneous models
against the dangers of ‘tweaking’ and Ayache 2001 for an early version of the argument.) Local
volatility models do not intend to explain the volatility smile problem by introducing new dynam-
ics for the underlying stock. And by ‘new dynamics’ we mean something original, like jumps



232 THE BEST OF WILMOTT 2

or stochastic volatility or default. Suggesting that smiles are caused by jumps in the under-
lying or by stochastic volatility (or both) not only sounds realistic and informative, but may
qualify as an explanation. Think how incredible it must sound, in comparison, that volatility
should locally rise at a given point in time and space, then drop at some other point, for the
sole purpose of matching today’s option prices! It really sounds as if somebody was trying to
force an interpretation in terms of local volatility on a phenomenon which has different and
deeper origins. As a matter of fact, Jim Gatheral (2003) has provided what is to our mind the
right interpretation of local volatility. He shows that local volatility is but the local expected
variance of the underlying in general stochastic volatility models (that is to say, in ‘realistic’
models).

2.2 The ‘natural’ local volatility surface

Another reason why we should be suspicious of the local volatility model and why it falls in a class
of its own (which may simply be the class of ‘not being a model’) is that it is non-parametric in
essence or else arbitrarily parametric. Dupire’s derivation essentially shows that any smile surface
can be fitted by local volatility provided the model is non-parametric, and it basically provides
the non-parametric formula. On the other hand, methods consisting in parameterizing the local
volatility surface a priori (through spline functions or any other convenient representation), and
in fitting the smile surface by minimization of a loss function (Coleman et al. 1999, Jackson
et al. 1998), suffer from the arbitrariness of the representation, particularly the arbitrariness of
the behaviour of local volatility at the boundaries of the domain. Proponents of such approaches
are always at pains trying to justify their favourite representation of the local volatility surface
on grounds of its intuitive appeal or physical realism or what have you. It is not uncommon that
they maximize some entropy or some regularity criterion while minimizing their loss function,
the underlying idea being that nature somehow favours smoothness and regularity. In a word,
they look for the ‘most natural local volatility function’ matching the option prices. One wonders
what that means.

2.3 Arbitrage-free interpolators

Jump-diffusion and stochastic volatility models, by contrast, lend themselves naturally to the
routine of fitting the option prices by minimization of a loss function, as they are ‘naturally
parameterized’ by the coefficients of the process (for instance the intensity of jumps and the
parameters of the jump size distribution in the Merton model (1996); the volatility of volatility,
its mean reversion, its correlation with the underlying in Heston 1993, etc.). As research on
local volatility models was getting more and more entangled in issues purely computational
(finding the smoothest arbitrage-free interpolation, maximizing the right regularity criterion, etc.;
Andersen and Brotherton-Ratcliffe 1998, Avellaneda et al. 2000, Bodurtha and Jermakyan 1999,
Coleman et al. 1999, Jackson et al. 1998, Kahale 2003, Lagnado and Osher 1997, Li 2001),
and was drifting farther and farther away from the ‘physics’ of the problem, it so happened
one day that our computational expert asked our financial theorist what to his mind the ‘most
natural local volatility function’ could be, suited for a given smile. Undecided between many
attractive numerical alternatives, our man was seeking guidance from the underlying ‘physics’.
Not surprisingly, the financial theorist suggested he looked at local volatility surfaces ‘such as
might have been produced by models of jumps in the underlying, or stochastic volatility, etc.’
In other words, the suggestion was that the best solution to the numerical problem of inferring
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the smoothest, most regular, and arbitrage-free local volatility surface was to pretend that the
option prices were generated by a jump-diffusion, stochastic volatility model! If you are so keen
on local volatility, then indeed jump-diffusion/stochastic volatility models can be sold to you as
‘financially meaningful, arbitrage-free, super-interpolators’. This is just the rehearsal of Gatheral’s
point. Only the question now becomes: If you go this far, why bother with local volatility any
longer? For market completeness perhaps?

2.4 ‘Local’ everything?

More to the point: Why hasn’t anybody ever tried to fit a non-parametric jump-diffusion or
stochastic volatility model to option data? Why is everybody busy searching for constant (or
perhaps only time-dependent) parameters in Heston, Merton, SABR (Hagan et al. 2002), and
nobody has proposed that both the diffusion coefficient and the jump coefficients, or both the
volatility of volatility and the correlation coefficient, may become non-parametric functions of time
and space? One possible answer is that the model would very rapidly become computationally
infeasible; with the implication that the reason why non-parametric inference is actually done
in the pure diffusion model and in no other model (or, in other words, the reason why local
volatility models simply exist) is that it can be done. Hardly a proud conclusion. It means
that local volatility models are just a temporary diversion outside the tracks of true progress.
Another possible answer is that the continuum of vanilla call prices C(K ,T ) will no longer be
sufficient for calibration purposes when more than one parameter of the pricing equation are made
a function of time and space. One would require an additional continuum of market prices, not
redundant with the vanillas. Why not add, for instance, the continuum of prices of American one-
touches OT (B,T ) of different barrier levels and maturity dates? As it happens, this might ensure
agreement with the market prices of barrier options, an urgent problem for all exotic options
trading desks.

We will have a lot more to say later about additional market information that we may require
in the calibration phase. Enough to observe for the moment that the literature is not treating
the showdown between local volatility and the other smile models properly. Like we said, local
volatility is not a model, it is the tweaking of Black–Scholes. And the tweaking could equally be
applied to Heston, or Merton, or any alternative smile model, if only we had the computational
guts to do so. It seems the literature is standing at a methodological crossroads between the tough
computational decision to involve additional instruments in the calibration—no matter the specific
model or its parametric/non-parametric status—and the temptation to develop specific models just
for their own sake and the sake of an original name, then to check whether they predict the right
exotic option prices, or the right smile dynamics. At any rate, it is unfortunate that external issues,
such as tractability, solvability, elegance of formulation, etc., should be the ultimate guides of
scientific research. We motivate our chapter by situating it precisely at this crossroads.

As a matter of fact, an attempt could be made at the calibration of a jump-diffusion model
with local diffusion component and local jump intensity. Indeed, a natural extension of the
Black–Scholes diffusion model in the equity world is to include the risk of default in the pricing
problem of equity derivatives subject to credit risk, like convertible bonds. This introduces the
hazard rate function λ(S, t) in the usual partial differential equation:

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
+ (r(t) + λ(S, t)) S

∂V

∂S
= r(t)V + λ(S, t)X
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where X is the loss given default, and means we would have to calibrate the hazard rate func-
tion, on top of the volatility function, to available market data. The obvious candidates are the
continuum of vanilla option prices C(K, T ) and the continuum of credit default swap spreads as
a function of present stock price and maturity CDS(S, T ). See Andersen and Buffum (2003) for
an example of such joint calibration. Note, however, that Andersen’s procedure is parametric in
that he proposes simple parametric representations of σ(S, t) and λ(S, t). But nothing stops us, in
theory, from extending the forward induction argument of Dupire, or the Fokker–Planck equation
approach of Klopfer and Tavella (2001), to the case where the probability density diffuses under
the Brownian component as usual and ‘leaks’ into the state of default through the Poisson intensity
of the default jump process, and from inferring σ(S, t) and λ(S, t) non-parametrically.

2.5 The mirage of the vanillas

The conclusion we draw from our first bash at local volatility models is twofold. First, local
volatility is not a model. It is the ‘corruption’ of a model2 and the corruption, for that matter,
can spread over to all the other models. At best, local volatility can be seen as a shorthand or
an interpretation: it is the local expected variance of some deeper and more realistic dynamics.
(Think of Ehrenfest’s theorem which interprets the classical mechanical variables as expectations
of the ‘true’ quantum mechanical observables.) Second, when thinking about the other models
(jump-diffusion, stochastic volatility, etc.), one should keep in mind that they can be made ‘local’
too. For once one recognizes that vanilla option prices will not be sufficient for calibration in
that case, one realizes that there is nothing special about the vanillas anyway. The only reason
why authors of jump-diffusion, stochastic volatility, or universal volatility models insist on fitting
them to the vanillas is that they followed in the steps of the local volatility approach and vanillas
were the obvious calibration candidates there.

We also fear the real reason might be that vanillas alone admit of analytical solutions in the
models they propose, or even worse, that they have precisely grabbed the models which offered
analytical solutions for the vanillas to begin with. We would love to see some of these authors
calibrate their jump-diffusion, stochastic and universal volatility models, to a handful of options
of significantly different payoff structures : vanillas, barriers, cliquets, credit default swaps, etc. As
a matter of fact, vanilla options can be the poorest candidate for encapsulating the information
about the stochastic process, when processes more general than a diffusion are considered. That
our problem is called the ‘smile problem’ is no reason why the calibration of the model, or even
its whole intention, should revolve around the vanillas. And that vanilla option trading is the
ancestor of exotic option trading, or that traders are accustomed to envision alternative stochastic
processes in terms of the vanilla smiles they generate, is an even worse excuse. But again, SABR
would not be SABR if it did not allow the expansion of the Black–Scholes implied volatility (in
other words the vanilla smile) in terms of the parameters of the process, and Heston would not
be Heston, or Hull and White (1988) Hull and White, if...

3 Formulation of the smile problem

3.1 The real smile problem

Not only can we argue, on a priori grounds or from a purely methodological point of view, that the
local volatility model is not a model, but it also demonstrably fails as a model of option smiles.
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Indeed the real smile problem is not how to fit the vanillas or how to price them! Straightforward
spline interpolation does that very nicely. The real smile problem is the pricing of exotic options
and more generally the hedging of all kinds of options, including the vanillas, under dynamic
assumptions at variance with the Black–Scholes model. As noted by almost everybody, the local
volatility model fails miserably on both counts. Both the barrier option price structure and the
dynamic behaviour of the smile predicted by a vanilla-calibrated local volatility model diverge
from empirical observation (Lipton and McGhee 2002, Hagan et al. 2002). ‘The failure of the
local volatility model,’ writes Hagan, ‘means that we cannot use a Markovian model based
on a single Brownian motion to manage our smile risk.’ We need to assume an independent
process for volatility. This opens the door to stochastic volatility models, and more generally,
to all kinds of alternative dynamics that have been proposed over time as a replacement of
Black–Scholes.

Perhaps the most important aspect of the smile problem today is to find a way of discriminating
between all the alternative proposals to solve it. This is the symptom of a science in crisis, not
just the symptom of a problem. Definitely the accurate pricing of exotics and the soundness of
the hedging strategy are good selection criteria. To put it in Lipton’s words (2002):

We describe a series of increasingly complex models that can be used to price and
hedge vanilla options consistently with the market. We emphasize that, although
all these models can be successfully calibrated to the market, they produce very
different hedging strategies. [...] A number of models have been proposed in the
literature: the local volatility models of Dupire (1994), Derman & Kani (1994) and
Rubinstein (1994); a jump-diffusion model of Merton (1976); stochastic volatility
models of Hull and White (1988), Heston (1993) and others; mixed stochastic jump-
diffusion models of Bates (1996) and others; universal volatility models of Dupire
(1996), JP Morgan (1999), Lipton & McGhee (2001), Britten-Jones & Neuberger
(2000), Blacher (2001) and others; regime switching models, etc. [...] Too often,
these models are chosen ad hoc, for instance, on the grounds of their tractability and
solvability. However, the right criterion, as advocated by a number of practi-
tioners and academics, is to choose a model that produces hedging strategies for
both vanilla and exotic options resulting in profit and loss distributions that are
sharply peaked at zero.

This is the most cogent formulation of the smile problem we know of.

3.2 Indeterminateness of the conditionals

We shall quickly review the smile models which are most representative of today’s smile literature,
but let us first investigate the reason why smile models of different stochastic structure may not
agree on exotic option pricing or the option hedging strategies (a.k.a. ‘smile dynamics’) even
when calibrated to the same vanilla smile. The picture becomes clear when we have a look at the
way the calibration is carried out. Denoting A

i,j

i0,j0
the price at state i0 and time j0 of a security

paying off $1 at state i and future time j (a.k.a. Arrow–Debreu security), it can be related to the
vanilla call option prices in the following way:

A
i,j

i0,j0
= C(Ki+1, Tj ) − 2C(Ki, Tj ) + C(Ki−1, Tj )

�K2
(1)
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In continuous time and space this is expressed by

p(S, t; K, T )e
−

T∫
t

r(s) ds

= ∂2C(S, t; K, T )

∂K2

where p(S, t; K, T ) is the transition probability density from initial state and time (S, t) to (K, T ).
Introducing the vector notation:

A
j

i0,j0
=




A
1,j

i0,j0

A
2,j

i0,j0
...

A
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


(2)

and the matrix notation:

A
j+1
j =
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A
1,j+1
1,j A

2,j+1
1,j · · · A
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...
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. . .
...
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1,j+1
N,j A

2,j+1
N,j · · · A

N,j+1
N,j




(3)

Up to a discounting factor, this is the matrix of conditional transition probabilities from states at
date j to states at date j + 1. (Crucially, the assumption here is that states of the world are just
states of the underlying.)

The conditional probability rule yields the following equation:

(
A

j+1
i0,j0

)T =
(
A

j

i0,j0

)T

A
j+1
j (4)

Without any further information about the structure of the stochastic process, this is the only
constraint that the prices of vanilla options today impose on the matrix of conditional probabilities.
Infinitely many matrices solve that equation of course. In a continuous diffusion framework this
forward equation becomes

∂p

∂T
+ ∂(rKp)

∂K
− 1

2

∂2(σ 2K2p)

∂K2
= 0 (5)

and shows why the knowledge of the prices of Arrow–Debreu securities maps the diffusion
process σ(K, T ) completely.

3.3 Smile dynamics and model dependence

To repeat, the only information contained in the set of vanilla option prices C(K, T ) of different
strikes and different maturities, independently of any model, is the map of transition probabilities
from present day and present spot to whatever future time and future spot we are looking at. This
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says nothing about the conditional transition probabilities from a future date to a further future
date. Additional information is needed to help determine those conditionals. In theory, we would
need the knowledge of all ‘forward smiles’, in other words, the future prices of all vanilla options
as seen from all possible states of the world, not mentioning that the underlying stock price may
not be the only state variable (in stochastic volatility models, typically).

Choosing a particular model for the underlying dynamics definitely adds some structure. It
is a form of parametrization of this totally non-parametric picture. The only ‘structure’ that
the local volatility model adds consists in removing the need for market information beyond
the vanilla option prices in the fully non-parametric case. The ‘matrix’ of conditionals is fully
determined in that case, and there is no spatial state variable other than the underlying. Alterna-
tive models such as jump-diffusion, or stochastic volatility, or universal volatility models, also
dramatically reduce the degrees of freedom in the choice of the conditionals, particularly so
when the coefficients of the given process are constant, or time dependent, or assume some
parametric form. Now think how different the structure of conditionals that they imply can be,
compared to the pure diffusion case (e.g. the possibility of jumping and hitting a barrier in
between future dates, the addition of another state variable indexing the forward smiles, etc.), yet
their authors calibrate them to the vanillas just the same! In a sense, the local volatility model
is more honest than the other models with regard to the conditionals. You just know there is
nothing you can do. In the other models, by contrast, you calibrate a bunch of constant param-
eters in what seems to be a legitimate calibration move—typically you calibrate them to the
vanillas—and this sets for you all the conditional structure. Hardly can a result be more model
dependent!

3.4 Our preferred model

The reason why the local volatility model, the jump-diffusion models, the stochastic volatility
models, or more generally the ‘universal volatility models’, may agree or not agree among each
other or with the market on the prices of barrier options or forward starting options, is that each
model imposes a specific smile dynamics, or structure of conditionals. We claim that this smile
dynamics should not be imposed by the model, but inferred from the market. However, we have
to pick a certain framework.

Calibration, pricing and dynamic hedging cannot be totally model independent, even though
model independence should always act as a ‘regulative ideal’ in our research program. We shall
pick the framework with the features that everybody knows today are essential for explaining
the smiles. We know we need jumps (if only to account for shorter dated smiles and default
risk) and we know we need stochastic volatility (to account for longer dated smiles and to
acknowledge the very raison d’être of option markets and market-makers). Our discussion of
local volatility and Henrotte’s powerful statement3 should steer us away from inhomogeneous
models. The coefficients of our stochastic process shall be constant. However, we have learnt
from the unhappy story of the conditionals that market option data, other than the vanillas, must
be included in the calibration procedure. Under no circumstance shall we be prevented from doing
so by what Henrotte describes, in other people’s cases, as ‘a very somber agenda’: the need to
produce closed form or quasi closed form pricing solutions. Our pricing equations shall be
solved by numerical algorithms. For all these reasons, chiefly the fact that model names have
traditionally been associated with the discovery of analytical solutions, our model shall bear no
particular name. We shall call it ‘Nobody’s model’.
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3.5 Including exotics in the calibration

On the calibration side, we have noted that the value of barrier options is sensitive to the flux
of probability across the barrier (jumps, and volatility dynamics up to the barrier). The value
of forward starting options, on the other hand, is directly linked to the conditional transition
probabilities, or forward smiles. In other words, both depend on what extra structure the matrix
of conditional transition probabilities may have, on top of the constraint given by the spot vanilla
smile. This designates simple barrier options like the one-touch or American digital, and the
forward starting options as the natural candidates for extending our calibration set and helping
determine the smile dynamics.4 Traders accustomed to Derman’s (1999) classification of smile
dynamics in terms of ‘sticky-strike’ or ‘sticky-delta volatility regimes’ know that the delta of the
vanillas is very much dependent on the type of volatility regime the market is in. Derman’s study
produces evidence that both kinds of regimes have obtained over time within a single market.
Depending on the regime you think the market is in, you make the following adjustment to your
Black–Scholes hedge.

When σimp (S, t, K, T ) is the implied volatility for a European style option we have:

C (S, t, K, T ) = CBS

(
S, t, K, T , σimp (S, t, K, T )

)
(6)

The delta hedge becomes a combination of Black–Scholes delta and a correction term due to the
regime of movement of the smile with a moving underlying:

� = ∂C

∂S
= ∂CBS

∂S
+ ∂CBS

∂σimp

· ∂σimp

∂S
(7)

We claim that nobody should be in a position to decide which particular smile dynamics will
prevail. It is really like guessing a price (as Marco Avellaneda once rightly observed in a financial
workshop at NYU). Only the market can provide such information. We are saying that your wrong
guess about the smile dynamics can generate an immediate arbitrage opportunity against you, if
somebody picks the right security to trade against you. As a matter of fact, all FX option traders
are aware of the existence of such a security! It is the barrier option, the simplest instance of
which is the one-touch.

Different projected evolutions of the vanilla smile lead to different spot prices of barrier options
in the FX traders’ minds, because they think of the future cost of unwinding the vanilla static
hedge that they have set up against the barrier option. This insight can be further refined and
made rigorous in a fully dynamic hedging picture. (Indeed the vanilla static hedge that those FX
exotic option traders have in mind is not always consistent with the smile dynamics they project.
For instance they immunize the vega, the vanna and the volga of the barrier option with a static
combination of vanillas, yet they derive their hedging ratios from the Black–Scholes model which
assumes constant volatility.5)

The price structure of the one-touches contains implicit information about the smile dynamics,
therefore about the delta you should be using to hedge the vanilla options! So does the price
structure of the forward starting options. This is why the one-touches and the forward starting
options must be included in the calibration.

In conclusion, the exotic option pricing problem and the problem of smile dynamics
are intimately linked, and the pricing/hedging model cannot dispense with including exotic
options in the calibration.
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4 A quick review of representative smile models

4.1 Stochastic volatility

In stochastic volatility models (Heston 1993, Hull and White 1998), volatility is itself stochas-
tic and follows some mean reverting process with its own volatility and correlation with the
underlying share. The stochastic volatility models can be seen as modelling the option price as
an average of the Black–Scholes prices with respect to volatility. This model is essential for
the pricing of longer-dated options which are most sensitive to volatility changes. It avoids the
scale effect observed in long-term local volatilities. Least square fit is used to search for model
parameters to match observed market prices.

The problem with stochastic volatility models is that the derivative instrument is exposed
to volatility risk on top of market risk, and the underlying cannot hedge both Brownian
motions.

The Heston model is, for instance, given by the following risk-neutral process:

dS

S
= rdt + √

vdW

dv = κ (θ − v) dt + ε
√

vdZ

where the volatility process and the underlying process are correlated through a correlation coef-
ficient ρ. And the pricing equation is given by:

∂V

∂t
+ 1

2
v

(
S2 ∂2V

∂S2
+ 2ρεS

∂2V

∂S∂v
+ ε2 ∂2V

∂v2

)
+ rS

∂V

∂S
+ κ (θ − v)

∂V

∂v
= rV

The calibration of the model consists of finding parameters of the volatility process: κ (mean
reversion), θ (long-term volatility), ε (volatility of volatility), ρ (correlation between the volatility
process and the underlying process) as well as initial volatility state v0, such that option market
data is fitted.

4.2 Jump-diffusion

Jump-diffusion models (Merton 1996) add jumps and crashes to the standard diffusion process
of the underlying. They intend to reproduce the underlying dynamics more realistically and to
capture the strong smile exhibited by short-dated options. The underlying share price follows a
risk-neutral process governed by the following equation:

dS

S
= (r − λm) dt + σdW + (

ej − 1
)

dN

where N is a Poisson process with frequency λ, W is a Wiener process independent of N , j is a
random logarithmic jump size with pdf φ(j) and m is the expected value of ej − 1.

The problem again is that the Black–Scholes continuous hedging argument breaks down
in the presence of jumps.

Some other models lay jumps on top of stochastic volatility models (Bates 1996).
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4.3 Universal volatility

Blacher The universal volatility model of Blacher is described by the following risk-neutral
process:

dS

S
= rdt + σ

(
1 + α(S − S0) + β(S − S0)

2) dW

dσ = κ (θ − σ) dt + εσdZ

The volatility σ follows a mean reverting process to level θ , correlated with the underlying process
via ρ.

It is worthy of note that Blacher motivates his universal volatility model for reasons almost
opposite Hagan et al. (2002). Like Hagan, he speaks for stochastic volatility models. However, he
notes that although the ‘smile is stochastic, simple stochastic volatility models [such as Heston’s]
do not predict a systematic move of the relative smile when the spot changes’. ‘Not what we
observe in the market,’ he says. ‘This means hedging discrepancies, starting with a wrong delta.’
In other words, Blacher is noting that space homogeneous models like Heston’s follow the sticky-
delta rule. The ‘relative smile’ they imply, i.e. the smile with respect to moneyness or delta of
the option, is unchanged when the underlying spot changes. Yet Blacher wishes that the vanilla
smile may not always move coincidentally with the underlying. He claims control over the smile
dynamics. In order to achieve this, he has no choice but to reintroduce inhomogeneity in the spot
homogeneous stochastic model.

He writes: ‘α, the slope of the deterministic part, creates skew and governs the change of
ATM implied vol with respect to change of underlying. β, the curvature of the deterministic part,
creates smile curvature and governs the change of the slope of the smile curve with respect to
change of underlying.’

Note that SABR also breaks the homogeneity of degree 1 by allowing values for β different
from 1, in the risk-neutral process:

dF = αFβdW1

dα = vαdW2

F is the forward price, α its volatility, v the volatility of volatility, and dW1 and dW2 are Wiener
processes correlated through:

〈dW1, dW2〉 = ρ · dt

Lipton Lipton (2002), on the other hand, argues for his universal volatility model on the grounds
of its adequacy for pricing barrier options. He writes:

A properly calibrated universal model matches the market [of barrier options] much
closer than either local or stochastic volatility models, which tend to sandwich the
market. [...] While both local and stochastic volatility models produce price correc-
tions [for barrier options] in qualitative agreement with the market, only a universal
volatility model is capable of matching the market properly. In our experience, this
conclusion is valid for almost all path-dependent options.
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By ‘properly calibrated universal model’ Lipton means ‘calibrated to the vanillas’. On the
specific topic of calibration he otherwise notes: ‘Because of its complexity, the universal volatility
model can be solved explicitly only in exceptional cases (which are of limited practical interest).
[ . . . ] The model calibration, of course, is a different matter.’

Lipton’s risk-neutral stochastic process is given by:

dS

S
= (r − λm) dt + √

vσL(t, S) dW + (
ej − 1

)
dN

dv = κ (θ − v) dt + ε
√

vdZ

And the pricing equation is given by:
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φ(j) dj = (r + λ)V

where σL(t, S) is the local volatility part, κ the mean reversion of volatility, θ the long-term
volatility, ε the volatility of volatility, ρ the correlation between the volatility process and the
underlying process, λ the intensity of the Poisson jump process, j > 0 the random logarithmic
jump size with PDF φ(j), and m the expected value of ej − 1.

4.4 Conclusion
In conclusion of our review of existing smile models, let us retain the following fact. The local
volatility model and the stochastic volatility model stand at opposite extremes. The first is inhomo-
geneous, the second is homogeneous. Neither one predicts the right smile dynamics or produces
the right barrier options prices. Only the universal volatility model, which allows explicit control
over the smile dynamics (by reintroducing inhomogeneity and by mixing local volatility behaviour
with stochastic volatility behaviour), manages to fit the smile dynamics (Blacher 2001) and at the
same time to fit the barrier option prices (Lipton and McGhee 2002).

Let us then solemnly pose the question: ‘Is the recourse to inhomogeneity really indispens-
able?’ Or again: ‘Given our plea for inclusion of the exotics in the calibration and our credo in
homogeneous models, can we also claim control over the smile dynamics?’

5 Numerical illustrations of the smile problem
We will try to answer that big question by way of practical examples rather than fundamental
theorizing. The examples will also serve the purpose of illustrating the smile problem, namely that
models of different stochastic structure may very well agree on the vanilla smile yet completely
disagree on the exotics and smile dynamics. Instead of solving Heston’s model, or Dupire’s model,
or Lipton’s model, we will build up our series of examples from a simple instance of the ‘model
with no name’, the model we have called ‘Nobody’s model’.

5.1 The calibration issue
Baby examples First, we consider a simple jump-diffusion model where the underlying diffuses
with a constant Brownian volatility and may incur two jumps of fixed size and constant Poisson
intensity. We call this simple stochastic structure ‘Baby1’.
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TABLE 1: BABY1 PARAMETERS

Brownian diffusion 7.00%
Jump size Jump intensity

−25% 0.2
10% 0.4

For illustration, we consider a Brownian volatility component of v = 7%, an upward jump of
size y1 = 10% and intensity λ1 = 0.40 and a downward jump of size y2 = −25% and intensity
λ2 = 0.2. Table 1 summarizes the parameters of Baby1.

TABLE 2: VOLATILITY NUMBERS IMPLIED BY
BABY1

Strike
Maturity (years) 0.16 0.49 1

80 30.67% 22.20% 18.97%
85 27.41% 20.97% 18.33%
90 22.12% 18.47% 17.19%
95 15.47% 15.32% 15.70%

100 10.90% 12.96% 14.32%
105 11.69% 12.12% 13.37%
110 13.67% 12.16% 12.83%
115 14.48% 12.42% 12.58%
120 15.79% 12.73% 12.49%
130 17.37% 13.44% 12.56%
140 18.74% 14.08% 12.77%

The probabilities of jump are given in the risk-neutral measure. Consequently, we can compute
the vanilla option prices generated by this process and re-express them in Black–Scholes implied
volatility numbers (see Table 2), thus producing the smile. The interest rate is r = 2% and the
underlying spot is S = 100.

Note that the smile is steepest for shorter dated options, and tends to flatten out for longer terms
(see Figure 3). We can see this simple model as a discretization of the ‘traditional’ jump-diffusion
models (e.g. Merton 1996) with a probability distribution of jump sizes.

Volatility smiles can alternatively be represented as a function of the option delta and matu-
rity rather than its strike and maturity. This is the origin of the appellations ‘sticky-strike’ and
‘sticky-delta’. Smiles that are a function of the moneyness of the option are sticky-delta. Their
representation in the delta/maturity metric is invariant when the underlying moves. Figure 4 shows
the alternative graph of our smile in that metric.

We recompute our smile for S = 120 (Figure 5). As our jump-diffusion model is homogeneous
and volatility and jump sizes relate to proportional changes of the underlying, the resulting smile
surface is sticky-delta. It is unchanged in the delta/maturity metric, and it moves along with the
underlying in the strike/maturity metric.
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Figure 3: Volatility smile generated by Baby1 against strike price
for three different expirations and underlying spot price of 100
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Figure 4: Volatility smile generated by Baby1 against delta for
three different expirations and underlying spot price of 100
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Figure 5: Smile produced by Baby1 against strike price for three
different expirations and underlying spot price of 120

Next, we consider another simple stochastic structure that we call ‘Baby2’. The volatility of
the Brownian component is now stochastic and can assume two states, or regimes. The transitions,
or jumps, between the two volatility states are caused by Poisson processes of constant intensity.
At least two Poisson processes are needed to secure the transition from Regime 1 to Regime 2
and back. As Brownian volatility jumps between regimes, the underlying may simultaneously
incur a jump of fixed size. This builds in correlation between jumps in the underlying (or return
jumps) and volatility jumps. By convention, Regime 1 is the present regime. You can think of
Baby2 as a simplification of stochastic volatility models with correlated return jumps and volatility
jumps.

We then propose the following. We shall use Baby2 to try to fit the vanilla smile generated by
Baby1. Note that Baby1 admits of five free parameters (the Brownian diffusion coefficient, the
two jump sizes and the two jump intensities) and Baby2 of six (the diffusion coefficients in the
two regimes, the two inter-regime jump sizes and the two jump intensities).

Calibration of Baby2 is achieved by searching for the six parameters by least squares fitting
of the option prices produced by Baby1. The calibration results are shown in Figures 6 and 7 and
the set of parameters is summarized in Table 3. Then we see how Baby1 and Baby2 price a given
barrier option.

As seen in Table 4 and Table 5, Baby1 and Baby2 seem to be in agreement on the prices of
the vanilla options and yet in disagreement on the price of the call 100 up and out at 107. You
may think the discrepancy between the barrier option prices is due to the fact that Baby2 has
not exactly matched the vanilla smile generated by Baby1. Indeed, Baby2 is structurally different
from Baby1 in that it can only pick up a single return jump, when it starts in Regime 1. This jump
takes it to Regime 2, and it is only then that it may incur a jump of a different nature. Notice
how Baby2 has managed to decipher Baby1’s downward jump (it finds a jump of size −28% and
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intensity 0.14 to account for the jump of size −25% and intensity 0.20), and how it has fudged
Baby1’s 7% Brownian and upward jump into a Brownian component of 10.02%.

However, total volatility in Regime 1 of Baby2 is very close to total volatility6 in Baby1 (see
Table 6). As a result, Baby2 performs better at fitting the out-of-the-money put skew of Baby1
than the out-of-the-money call skew. Still, it may look surprising that the difference between the
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TABLE 3: BABY2 PARAMETERS WHICH BEST FIT THE
VANILLA SMILE GENERATED BY BABY1 (TABLE 2)

Brownian diffusion

Regime 1 10.02%
Regime 2 8.44%

Jump size Jump intensity

Regime 1 → Regime 2 −28.07% 0.1395
Regime 2 → Regime 1 0.24% 0.3947

TABLE 4: COMPARISON OF THE PRICES GENERATED BY BABY1
AND BABY2 FOR DIFFERENT 6-MONTH MATURITY OPTIONS

Call 100 Call 107 Put 93

Baby1 Price 4.12 1.28 1.58
Implied volatility 12.96 % 12.07% 16.58%

Baby2 Price 4.22 1.25 1.51
Implied volatility 13.31% 11.93% 16.24%

TABLE 5: CALL 100 UP AND OUT
AT 107, OF MATURITY SIX
MONTHS PRICED BY BABY1 AND
BABY2

Price

Baby1 0.74
Baby2 0.49

barrier option prices produced by the two models should be so big, especially so when the prices
of the calls of strike 100 and 107 are not that different.

Body examples To clear any remaining doubt, we move to the next stage and consider a more
evolved model. The underlying can now find itself in three different regimes of Brownian volatil-
ity. Transition between the regimes is still carried out by a Markovian matrix of six inter-regime
Poisson jumps. The model now involves 15 free parameters (three Brownian diffusion coefficients,
six jump sizes and six jump intensities). We call this new stochastic structure ‘Body’.

Baby1 and Baby2 now appear as special cases of Body. Baby2 corresponds to Body with
the transitions to Regime 3 disabled. And Baby1 corresponds to Body with the three diffusion
coefficients set equal to 7% and the two Poisson jumps from any of the three regimes to any other
set equal to Baby1’s Poisson jumps.
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TABLE 6: TOTAL VOLATILITY IN THE
REGIMES OF BABY1 AND BABY2

Total volatility

Baby1 1 14.63%
Baby2 Regime1 14.50%

Regime 2 8.44%

We then propose the following. We shall calibrate Body twice to a full vanilla smile, each
time with a different initial guess on the 15 process parameters. And we shall pick a real vanilla
smile this time (the one in Figure 1 that gave us the local volatility surface in the first section),
not an artificially created one. Then we shall turn to the pricing of barrier options. The results of
calibration are shown in Table 7 and the corresponding sets of parameters are shown in Tables 8
and 9.

Notice that two calibration instances, Body1 and Body2, match the given market vanilla smile
fairly closely (see Table 7 and Figures 8, 9 and 10). Also note that we manage to fit a whole
surface of options prices, with different strikes and different tenors, with one set of constant
parameters, when other smile models typically require that the parameters become functions of
time.7 True, the reason for that may be that our parameters are many (15) and our ‘Body’ model
is not so parsimonious after all. This also explains why the calibration procedure may produce
multiple solutions and the loss function admits of several local minima. As far as barrier options
are concerned, we first look at the one-touches. In market practice, one-touches are identified and
quoted relative to Black–Scholes. The ‘30% one-touch’ conventionally refers to the American
digital option, paying out $1 as soon as the barrier is hit from below, that would be worth 30
cents in the Black–Scholes world, when priced with the ATM implied volatility of corresponding
maturity. (‘−30% one-touch’ conventionally means that the barrier is hit from above.) A market
quote of −4.88% for that one-touch means that it is actually worth (30% − 4.88%) = 25.12% in
the present market, or smile, conditions.

Table 10 describes the one-touch price structures given by Body1 and Body2. The differences
are considerable. As a result, standard barrier options will also be priced very differently by the
two models (see Table 11). Notice that it is the same model (Body) that is producing agreement
on the vanillas and total disagreement on the barriers between two calibration instances. The
situation is different from the case of agreement/disagreement between two different models,
such as local volatility and stochastic volatility, or jump-diffusion. Those simpler models merely
disagree with each other because of a big difference in what otherwise qualifies as simple stochastic
structure. It is not even guaranteed that they can fit a complete vanilla smile surface. Their case is
somewhat comparable to the agreement/disagreement we found between Baby1 and Baby2. When
the stochastic structures become complex, however, and start combining stochastic volatility and
correlated return jumps and volatility jumps (in models such as Body, or universal volatility,
which seem to be imposed on us anyway by the natural course of events and by the evolution of
the smile problem), we shall expect to witness increasingly frequent cases where a certain vanilla
smile is perfectly matched, yet certain exotic options are very badly mispriced, or priced just by
pure luck. In other words, we are way past the old debate on whether local volatility is better,
or jump-diffusion is better, or stochastic volatility is better, on whether they agree or disagree
on the exotics, and whether universal volatility should come and replace them all. Definitely
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TABLE 8: BODY1 PARAMETERS

Brownian diffusion Total volatility

Regime 1 9.57% 11.67%
Regime 2 6.24% 32.23%
Regime 3 2.25% 11.88%

Jump size Jump intensity

Regime 1 → Regime 2 −9.07% 0.2370
Regime 2 → Regime 1 62.67% 0.0855
Regime 1 → Regime 3 2.72% 3.3951
Regime 3 → Regime 1 −3.17% 2.9777
Regime 2 → Regime 3 24.63% 1.0944
Regime 3 → Regime 2 −22.66% 0.2040

TABLE 9: BODY2 PARAMETERS

Brownian diffusion Total volatility

Regime 1 7.77% 11.63%
Regime 2 19.11% 25.08%
Regime 3 3.98% 7.45%

Jump size Jump intensity

Regime 1 → Regime 2 −9.02% 0.6254
Regime 2 → Regime 1 15.85% 0.5124
Regime 1 → Regime 3 5.24% 0.8750
Regime 3 → Regime 1 2.19% 0.7163
Regime 2 → Regime 3 17.17% 0.4589
Regime 3 → Regime 2 −11.20% 0.2891

universal volatility is the answer and Lipton’s model has somewhat outgrown Lipton’s article.
As universal volatility models or SVJ models (stochastic volatility + jumps) seem unavoidable,
the preoccupying issue today is how to avoid a dilemma, occurring within the same universal
volatility model, such as embodied by Body1 and Body2.

You can easily imagine what the obvious trap would be. ‘How shall we distinguish between
multiple local minima, such as Body1 and Body2, and pick the right one?’ and you may be tempted
to answer: ‘Let us pick the solution that fits the vanillas best, down to the last penny!’ This is
what a well-known analytics vendor seems to be proposing. Their way out of the dilemma is
that a simulated annealing algorithm shall find the global minimum of the loss function involving
the vanillas only! Has anyone worried where that would leave the exotics? We live in a very
dangerous world indeed.
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We know what the right proposal should be. Include the one-touches, or other relevant exotic
options, in the calibration procedure. As a matter of fact, calibrating to the one-touches together
with the vanillas transforms the ill-posed problem into a well-posed one. We will no longer try
to reach for the global minimum among many local minima, but for a unique global minimum,
full stop.
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Figure 10: Cross-sections of the implied volatility surfaces shown
in Figures 8 and 9 at three different maturities

To illustrate that, we calibrate Body to the vanilla smile and to the whole collection of one-
touches produced by Body1 (Table 10), yet we select as initial guess of parameters the solution
produced by Body2 (Table 9). This way we can see whether the one-touches will pull us out of
what used to be the wrong local minimum. The calibration result is summarized in Table 12.
We call it ‘Body1Double’, and check it against Body1. Our minimization routine is a standard
Newton method.

Notice the following interesting phenomenon. Within an acceptable numerical tolerance,
Body1Double and Body1 seem to agree on the Brownian diffusion in all three regimes and
on the Poisson jump sizes and intensities taking us from Regime 1 to Regimes 2 and 3. They also
agree on the Poisson jumps leading from Regime 3 to Regimes 1 and 2. However, Body1Double
and Body1 seem to have switched the Poisson jumps leading from Regime 2 to Regimes 1 and 3.
The explanation is that total volatility is roughly the same in Regime 1 and Regime 3 (while it is
much higher in Regime 2), and that the only things that the underlying can ‘see’, once in Regime
2, are the total volatility of the Regime it will visit next and the Poisson jumps of course. While
formally different, Body1 and Body1Double are in fact perfectly equivalent solutions (as when
you permutate the regimes). As a matter of fact, we can check how well they agree on the pricing
of the Put 103 knocked out at 95, for different spot prices and different regimes (Figure 11).

Full Body, anybody, and nobody You may wonder what is so special about the stochastic
structure of Body. Nothing really, except that it has the minimum features that seem to be
required to capture the phenomenology of smile and smile dynamics. As far as we are concerned,
this is the only thing that counts. The question whether volatility should be diffusing rather than
jumping in between discrete states, whether the Poisson jump distribution should be continuous
rather than discrete, is in the last resort an aesthetic question (and often driven by the desire

19%

21%

17%

15%

13%

11%

9%

V
ol

at
ili

ty

three-month
maturity

two-year maturity

four-year maturity

Body 1

Vanilla

Body 2

85
.0

0
90

.0
0

95
.0

0

10
0.

00

10
5.

00

11
0.

00

11
5.

00

12
0.

00

13
0.

00

Strike ($)



CAN ANYONE SOLVE THE SMILE PROBLEM? 253

T
A

B
L

E
10

:
O

N
E

-T
O

U
C

H
P

R
IC

E
S

IN
F

E
R

R
E

D
B

Y
B

O
D

Y
1

A
N

D
B

O
D

Y
2 O
ne

-t
ou

ch
es

M
at

ur
it

y
−5

%
−1

0%
−2

0%
−3

0%
−5

0%
50

%
30

%
20

%
10

%
5%

(y
ea

r
fr

ac
tio

n)

0.
17

5
B

od
y1

0.
51

%
−1

.2
6%

−3
.8

1%
−5

.3
7%

−6
.4

4%
−6

.1
3%

−7
.8

1%
−8

,3
6%

−6
.0

8%
−3

.5
8%

B
od

y2
3.

99
%

0.
51

%
−5

.8
0%

−1
0.

45
%

−1
4.

78
%

−7
.7

2%
−7

.0
1%

−5
.9

1%
−4

.1
8%

−2
.6

6%

1.
5

B
od

y1
7.

15
%

6.
23

%
2.

44
%

−1
.7

0%
−8

.1
9%

−3
.0

4%
−6

.6
4%

−7
.8

9%
−6

.6
7%

−4
.0

4%
B

od
y2

8.
78

%
8.

94
%

6.
63

%
3.

08
%

−4
.8

8%
−3

.6
2%

−7
.7

6%
−8

.1
6%

−5
.9

8%
−3

.5
5%

5
B

od
y1

8.
12

%
8.

74
%

7.
56

%
5.

17
%

−0
.8

7%
−0

.0
2%

−2
.6

3%
−4

.1
0%

−4
.4

5%
−3

.3
0%

B
od

y2
8.

06
%

9.
12

%
8.

74
%

7.
10

%
2.

43
%

−0
.1

1%
−3

.1
4%

−4
.6

5%
−4

.5
9%

−3
.1

7%



254 THE BEST OF WILMOTT 2

TABLE 11: PRICING BY BODY1
AND BODY2 OF A PUT 103,
KNOCKED OUT AT 95, WITH A
90-DAY MATURITY

Price

Body1 0.99
Body2 1.29

TABLE 12: COMPARISON OF THE PARAMETERS AND TOTAL VOLATILITY
NUMBERS OF BODY1DOUBLE AND BODY1

Brownian diffusion Total volatility

Body1Double Body1 Body1Double Body1

Regime 1 9.55% 9.57% 11.69% 11.67%
Regime 2 6.44% 6.24% 32.23% 32.50%
Regime 3 2.41% 2.253% 11.88% 11.76%

Jump size Jump intensity

Body1Double Body1 Body1Double Body1

Regime 1 → Regime 2 −9.05% −9.07% 0.2405 0.2370
Regime 2 → Regime 1 25.02% 62.67% 1.1279 0.0855
Regime 1 → Regime 3 2.79% 2.72% 3.3208 3.3951
Regime 3 → Regime 1 −3.07% −3.17% 2.9882 2.9777
Regime 2 → Regime 3 65.12% 24.63% 0.0729 1.0944
Regime 3 → Regime 2 −22.68% −22.66% 0.2025 0.2040

of analytical solutions). And there is just no way we could discriminate between the probability
distributions of such models, by looking at the time series of the underlying. Volatility of volatility
is hardly measurable. Not mentioning that every continuous model turns ‘discrete’ when solved
numerically.

To the aesthetically minded, however, we can always suggest that Body can be further worked
out into a full-bodied version that we call ‘Full Body’. There is no limitation to the number of
volatility regimes we may want to consider, so a continuum of regimes is in theory possible.
And there is no limitation either to the number of Poisson jumps occurring between regimes
or within regimes. As we shift between Regime 1 and Regime 2, it could be a random draw
whether the concurrent return jump is positive or negative, and of what size. And Regime 1 could
be characterized, not just by a Brownian diffusion, but also by a collection of Poisson jumps
occurring within that regime. Body is very flexible and can mimic any given model. Body is
really anybody’s model. Or it can be everybody’s model at the same time (for instance Regime 1
can harbour a full local volatility model, Regime 2 a full Heston model, Regime 3 a full Merton
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Figure 11: Price of the Put 103 down-and-out at 95 against the underlying
price using Body1 and Body1Double parameters, in all three regimes

model, etc.). Yet Body will always be the dynamic, perfectly inter-temporally consistent, version
of such ‘mixings’, by contrast to what has come to be known as the ‘mixture’ or ‘ensemble’
approach (Gatarek 2003, Johnson and Lee 2003). We should really be talking of ‘superposition
models’ in our case rather than ‘mixtures’ (if we may borrow this crucial distinction from quantum
mechanics), in order to distance ourselves from the unhappy ‘ensemble’ approach.

Full Body is in fact a general structure, a family of models rather than a model. The way
people are used to think about regimes is in temporal succession. A regime of ‘sticky-strike’
smile behaviour can follow a regime of ‘sticky-delta’, etc. In the limit, we propose that you wake
up every day in a state of stochastic superposition of such regimes (yet, we repeat, with total inter-
temporal consistency and homogeneity), and that you watch for the market prices (one-touches,
forward starting options, etc.) that will best determine the superposition. This may sound as the
end of modelling to some people: ‘Black–Scholes, Merton, Heston, SABR, Bates, sticky-strike,
sticky-delta, etc., those are models, those are good names!’ Indeed so. Our model deserves no
name.

5.2 The hedging issue: optimal hedging

Let us now explore the other side of the smile problem, which we said was intimately linked to the
pricing of exotic options, namely the discrepancy that may occur between the hedging strategies
of two different models despite their being calibrated to the same vanilla smile. Before we do
so, however, we have to introduce a fundamental concept. In all the smile models we’ve been
considering (jump-diffusion, stochastic volatility, universal volatility) markets are incomplete.
In other words, contingent claims cannot be replicated with the underlying alone. Indeed the
Black–Scholes argument of self-financing, perfect dynamic hedging breaks down in the presence
of jumps and/or stochastic volatility. Local volatility smile models try desperately to save the
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complete market paradigm, but are unrealistic precisely for this reason. They imply, for instance,
that a barrier option is perfectly hedgeable with the underlying, no matter the volatility smile.

The other models evade the hedging issue altogether. They lay the stochastic process of
the underlying in the risk-neutral world directly, and assume that option value is the dis-
counted expectation of payoff under the risk-neutral measure.8 While this guarantees that
their option prices do not create instant arbitrage opportunities, they offer no guarantee that
the option value is ‘arbitraged’ against the process of the underlying, in the Black–Scholes
sense of ‘volatility arbitrage’. In other words, you cannot hedge the option with the under-
lying, and ‘lock’ the option value at the inception of the trade, through subsequent dynamic
action on the underlying. All you are offered in terms of hedging is the partial derivative
with respect to underlying—never a hedge in the presence of jumps—or some ‘external’
bucketing of the volatility surface, which almost certainly contradicts the assumptions of the
model.

What is needed is a theory of option pricing and hedging in incomplete markets. We
will introduce the concept of ‘optimal dynamic hedging’. By that we mean a self-financing
dynamic portfolio, involving the underlying and the money account, which optimally repli-
cates the derivative instrument, in some sense of ‘optimality’. Our choice of criterion is the
minimization of the variance of the P&L of the total portfolio. In other words, we draw
on stochastic control theory to propose a self-financing dynamic hedging strategy for the
derivative that lets you break even on average and guarantees that the distribution of your
P&L is the most ‘sharply peaked at zero’ that can be. We then propose as a definition of
‘derivative instrument value’ the initial cost of the self-financing optimal hedging strategy.
And we find that the initial cost of the optimal self-financing replicating portfolio has the
property of a pricing operator, it therefore behaves like a risk-neutral probability (Henrotte
2002).

Because our optimal hedging takes place in the real world, and our risk-neutral probability
measure is associated with optimal hedging, we are able to link our risk-neutral probability with
the real probability. Calibration and pricing can take place in the risk-neutral world. Since our
process parameters are inferred from the market prices of options, it is as if we were reverse-
engineering the pricing operator from those traded prices, and reapplying it to find the unknown
prices of some other options. However, when we start worrying about hedging the option, this can
only take place in the real world and necessitates the transformation of the probability measure.
This transformation requires an independent input: the market price of risk of the underlying, or
its Sharpe ratio.

We also define the variable HERO (Hedging Error at Replicating Optimum) as the minimized
standard deviation of the hedged portfolio. HERO is the measure of market incompleteness with
regard to the given instrument. It may be large either because the underlying is ‘incomplete’ (large
jumps, stochastic volatility...) or because the payoff is complex (exotics...). In the absence of jumps
and stochastic volatility, our optimal hedge would indeed coincide with the Black–Scholes perfect
hedge, and HERO would collapse to zero. Alternatively, the HERO of the underlying is trivially
zero, no matter the stochastic process.

5.3 The ‘true’ smile dynamics

Let us now go back to our solemn question: ‘Can we have control over the smile dynamics in
homogeneous models?’ At first blush, it seems the answer is no. Indeed, in space homogeneous
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models, Euler’s theorem implies the following relation:

C = S(∂C/∂S) + K(∂C/∂K) (1)

where C is the vanilla option price, S the underlying price and K the option strike.
C, S, K and ∂C/∂K being fixed for a fixed smile surface, this implies ∂C/∂S, or �, is fixed.

So it seems that two homogeneous models will agree on the option delta when they are calibrated
to the same smile, no matter their respective stochastic structures. The Merton model, the Heston
model, the Bates model, the SABR model when β = 1, will all produce the same vanilla option
delta. Only space inhomogeneous models (like local volatility or universal volatility which involve
an explicit relation between the diffusion coefficient and the underlying), can yield a different
delta, because of the corrective term they introduce (see Equation 7).

But we wonder. Is � = ∂C/∂S the right measure of smile dynamics? The answer is clearly
‘yes’ in the local volatility case where the underlying is the sole driving variable. However,
in models involving another state variable, typically in stochastic volatility or universal volatility
models, one cannot realistically move the underlying over an infinitesimal time interval and freeze
the other variable. As volatility is correlated with the underlying, it is very likely that it moves
too. Partial derivatives, such as ∂C/∂S and ∂C/∂σ , capture the smile dynamics only partially.
What we really need is the real time dynamics of the option price. In the local volatility case, we
were able to apply the chain rule to get the real time delta. The question is, how can we apply
the chain rule when volatility is an indeterministic function of the underlying, i.e. is correlated
with it?

Before we try to answer what seems to be a challenging mathematical question, let us ask why
we need the information on smile dynamics in the first place. Obviously in order to determine
the number of underlying shares that should be held against the derivative, or in other words, to
hedge. Only in the local volatility model does the notion of hedge coincide with the mathematical
derivative with respect to underlying. In incomplete market models, there is no mathematically
ready, i.e. non-financial, notion of hedge. We need to form the financial notion of hedge first (for
instance optimal hedging in the sense of minimum variance), then work out the mathematics.

We claim that our ‘optimal hedge’ is the substitute of the notion of smile dynamics in incom-
plete market models. As a matter of fact, the whole notion of ‘smile dynamics’ appears to be
muddled once the problem is set in the right frame. It is but a heritage of the local volatility
model—the only place where it finds its meaning—and the whole comparison of smile behaviours
between local volatility and stochastic volatility models appears to be ill-founded for that matter
(you are not comparing apples to apples), if all that is meant is the partial derivative with respect
to the underlying. So we might as well drop the whole notion of smile dynamics and get down to
the hedge directly. What good is the notion of smile dynamics in jump-diffusion models anyway?

Recall that as the market is incomplete, we can only hedge optimally, and the HERO reflects
how imperfect the hedge is. The optimal hedge that we produce already factors in the fact that the
underlying may diffuse and jump, and that volatility may be stochastically varying, correlated with
the underlying. In other words, it captures precisely the sense of ‘total derivative’ that mathematics
alone was unable to give us. What seemed to be a purely mathematical question (How do we
generalize the chain rule when the functions are indeterministic?) receives a financial answer
once the real purpose of the question is recognized (i.e. hedging).

However, if your only interest in smile dynamics is to predict the future shape of the smile sur-
face, and not necessarily to hedge, then your question may admit of a probabilistic answer—and
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a probabilistic answer only—outside the one-factor framework. Conditionally on the underlying
trading at some level S at some future date t , you may want to know what the expected value of
the vanilla options may be at that time, or in other words, what the smile surface may be expected
to look like. Expectation here means probabilistic averaging (either risk-neutral or real) over the
possible states of the other state variables(s), conditionally on the underlying being in state S.
You should bear in mind, though, that this expected value of the option is a different notion to its
future price, as it is purely mathematical and unrelated to replication.

Therefore the big question really becomes: ‘Can two homogeneous models agree on the vanilla
option prices, yet disagree on their optimal hedging strategies?’ The answer is a resounding ‘yes’,
as will be seen from the same Body examples as before. Recall the two instances of our calibration
of Body to a full vanilla smile which had resulted in two different local minima, and consequently,
in two different one-touch price structures. We weren’t sure at the time whether the two solutions
implied different smile dynamics, as they agreed on the option delta by homogeneity and by
Euler’s theorem. That they agree on the option price and delta, yet disagree on the optimal hedge
(and HERO), can now be made explicit (see Table 13).

TABLE 13: BODY1 AND BODY2 OUTPUTS FOR A 107 CALL

Sharpe ratio 0.1 0.5 0.9

Body1 Body2 Body1 Body2 Body1 Body2

Price 1.0131 1.0189 1.0132 1.0189 1.0132 1.0189
HERO 1.4429 1.2609 1.4429 1.2608 1.2811 1.1238
Optimal hedge 0.2217 0.1543 0.2177 0.1543 0.2409 0.1803
Delta 0.2894 0.2774 0.2895 0.2774 0.2894 0.2774
Gamma 0.0531 0.0540 0.0531 0.0540 0.0531 0.0540

Only when additional information is included in the calibration, that is to say, information
constraining the conditional transition probabilities, will the models agree on the ‘smile dynam-
ics’. And this is now meant both in the sense that they will agree on the exotic option pricing
and that they will agree on the (optimal) hedging strategy. ‘How do we gain control over the
smile dynamics?’ is therefore simply answered by controlling some exotic option price structures,
typically the one-touches or forward starting options.

This is a general answer, not just specific to homogeneous models. Indeed, optimal hedging
in incomplete markets is a general idea. It is just that the homogeneous models have helped us
make our point more sharply, thanks to the ‘surprising’ feature due to Euler’s theorem and to
what seemed to be a loss of control over the option deltas. Also recall that Hagan and Blacher,
who were arguing for control of the smile dynamics in inhomogeneous models, were not really
taking into account what we have called the true smile dynamics.

In conclusion, there is no need to reintroduce inhomogeneity just for the sake of fitting a
desired smile dynamics or a desired barrier option price structure. Henrotte’s principle can thus
be reiterated: any departure from homogeneity should be the cause of great concern and
should therefore be strongly motivated.

We also find interesting that the answer to what seemed at first an ‘innocent’ yet very relevant
question (‘How do I control the smile dynamics in my smile model?’) should require the theory
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of hedging and pricing in incomplete markets as an indispensable intermediary step. Financially
relevant questions can only be answered by relevant financial theory. The need to go back to the
‘basics’ is a very welcome conclusion, to say the least, at a time when quantitative finance seems
to be wasting itself in sophisticated mathematical exercise, or even worse, in sophistical pseudo-
models imported from foreign domains (e.g. the ‘mixture of models’, or ‘ensemble’, approach
which cannot even afford an inter-temporal process, let alone a hedging rationale).9

6 Conclusion: generalizing Black–Scholes

We have made the case for the necessity of introducing exotic options in the calibration phase
of the smile model, and the necessity of thinking in incomplete markets. Smile dynamics is more
important than smiles as pricing and hedging are essentially dynamic concepts, and incomplete
markets are omnipresent as smiles are essentially a departure from Black–Scholes. As a matter
of fact, the smile problem really begins with the question of the smile dynamics and the question
of the hedging rationale.10 These questions had remained hidden from us as long as we remained
blind to the degree of model dependence in the traditional models. Calibration to the exotics not
only validates the right guess about the smile dynamics, but it allows us, thanks to an extension
of the argument of optimal dynamic hedging in incomplete markets, to further lock the implied
smile dynamics.

Indeed, stochastic control theory can be invoked again and our optimal dynamic, self-financing,
hedging portfolios can be generalized to include other hedging instruments beside the under-
lying (see Figures 12 and 13). The price processes of the hedging instruments are independently
available to us as the initial costs of their respective optimal hedging strategies involving the
underlying alone. This guarantees that the price of the hedged derivative instrument can still be
defined as the initial cost of the composite hedging portfolio, and be independent of the particular
choice of hedging instruments other than the underlying. Dynamic multi-hedging of a derivative
instrument allows the resulting HERO to be even smaller and the market to approach completeness.
Typically a barrier option will be dynamically hedged with a combination of the underlying, a
vanilla option, and a one-touch. A convertible bond will be hedged with a combination of the
underlying, an equity option and a credit default swap. A complex cliquet will be hedged with
the underlying and a combination of simple forward starting options.

Calibration should be calibration with a point. It achieves nothing on its own. Treating the
vanillas, the one-touches, the forward starting options, or the credit default swaps, as alternative
liquid instruments underlying our jump-diffusion/stochastic volatility process, and using them
in the dynamic hedging of the given derivative instrument the same way that the underlying
stock is traditionally used in Black–Scholes, is the right way to generalize Black–Scholes to the
case of smiles. Making sure that the smile model prices the ‘underlyings’ in agreement with the
market, and that it is calibrated to their dynamics, is in the end no different from saying that the
Black–Scholes model prices the underlying in agreement with the market and is calibrated to its
Brownian volatility.

When the hedging instruments are appropriately chosen, we expect the hedge ratios to be robust.
Our hope is that they may even not depend on the particular model. In the end, a model is just a
piece of machinery, ‘cogs and wheels’ that allow us to dynamically glue together the appropriate
derivative instruments. If the relevant dynamics is properly captured (in other words, if the model
is calibrated to the maximum relevant information), and if the hedging instruments are properly
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chosen, then the hedging strategy should more or less impose itself naturally. As a matter of fact,
we found that it very often corresponded to the trader’s, model-independent, intuition.

Thus we conclude with the disappearance of the model. If solving the smile problem means
finding the right tool, then the directions we have suggested are indeed the right directions to
pursue. This goes hand in hand with a constant awareness of the perfectibility and relativity of
the tool. What we have proposed in this chapter is not so much the ‘definitive smile model’ as it
is the definitive way to think critically about any model.

But if solving the smile problem means finding the absolutely true process and the absolute
pricing algorithm, then we can safely declare: ‘Nobody can solve the smile problem!’
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21
Philosophy of Finance:
Definitive Smile Model:
Part I
Elie Ayache

Why should we write about smile models? This is the question behind the question.
For if the definitive smile model is not yet in sight, perhaps a definitive smile story
is possible.

W
hat is there more to say on the subject of smiles, and what is there to expect
from reflection on the smile problem today? Could the answer be the further
elaboration of the existing models? That is, could the future of our story be
purely technological and one of taking up the technical complications one after
the other, trying out jump-diffusion after the diffusion or stochastic volatility

after local, deterministic volatility? Should one become a specialist in Laplace and Fourier trans-
forms, and rank the models by classes of integrability, carefully selecting the functional form that
promises the most exciting analytical gymnastics? And shouldn’t then every quantitative analyst
start worrying about the best way to promote his model, and how to best argue that his model
must be the right one? Jump-diffusion may be better than diffusion because of the existence of
large and rare moves in the underlying. Moreover, ‘the ability of infinite-activity jump processes
to capture both frequent small moves and rare large moves’ may give us a further reason, as
argued by Carr et al. (2002), to discard the diffusion component altogether in the light of sta-
tistical evidence for the fine structure of asset returns. Or perhaps the quant should worry about
explaining market option prices as instantly observed rather than analyzing the underlying time
series, and feel confident that his smile model is the right one when it is able to match the prices
of, say, the barrier options, on top of the vanillas. This is the point of Lipton (2002b), and his
defense of his ‘universal volatility model’ which mixes jump-diffusion and stochastic volatility.

Lipton’s progress
‘Why should we write about smiles anymore?’ The answer may be that the only thing worth
writing today is a review of existing smile models and their classification, à bestiaire, like the
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French say. This is what Lipton (2002a) has attempted. A roadmap may indeed become desirable
when the territory keeps expanding and the beasts look stranger and stranger, if only because
it has the virtue of listing the known obstacles and the dark alleys. You read here and there
that closed-form solutions cannot be had when there is correlation between the underlying and
its volatility, or that calibration becomes a formidable task when the underlying is jumping and
volatility is stochastic. A roadmap, however, is only as good as the vehicle that it is intended for,
and it is clear that Lipton’s intended vehicle is the closed-form, or semi-closed-form solution,
when it can be had. On the other hand, there is something disheartening about the very idea
of a ‘complete guide’, and that is that such a guide is only as good as its vintage. Apart from
proposing a smile model for every taste and culture (jump-diffusion, stochastic volatility, local
volatility), and updating us on the last fashionable trend, what is to be gained from such a listing
over and above its comprehensiveness and good taste? What is the real advance? And when the
‘universal volatility model’, which Lipton offers for the finale of his catalog, is itself interpreted
back into the series as the latest model produced, or in other words, the last model of the list
which naturally beats all the others in terms of complexity and number of parameters, might we
not fear that the truly different argument that Lipton brings up at some point, namely the capacity
of this model to match the market price of barrier options, may look very remote? If matching the
barrier option prices is such a definitive argument, then why bother with the history and lineage
of smile models anymore? Lipton’s dramatic build-up makes it all sound as if smile modeling
finally reached an age when jumps can be safely combined with stochastic volatility and the
appropriate Fourier transform successfully obtained, and as if—surprise!—the market concurred,
in celebration of that age and in acknowledgement of that maturity, with the gift of his agreement
on the barrier option prices. Are we to believe that empirical agreement with the barrier option
prices was just waiting for this last advance in smile theory and smile model design, and for an
advance with precisely that parametric form? Or was the ‘universal volatility model’ somehow
encoded in the market? What other reasons are we offered for this agreement apart from pure
luck, or just the supernatural argument that the ‘universal volatility model’ is next on our list
and has got to address, for that sole reason, the next unsolved problem which is the matching of
barrier option prices? Instead of showing us what it takes for a smile model to match the barrier
option prices over and above its matching the vanillas, and why the ‘universal volatility model’
has it—for that would provide a real next stage for our thinking about smiles—Lipton lapses into
metaphysics and retains as the only benefit from agreement with barrier option prices the fact that
his model must somehow be distinguished on that list and be true; period. To put it differently:
what if barrier option prices contained additional information that has to be calibrated in the model
independently of the vanillas? When Lipton’s point is precisely that two smile models can agree
on the vanillas and disagree on the barriers, might we not fear that the market dynamics may
evolve the next day and imply a different price structure for the barriers, given a certain price
structure of the vanillas? Might the ‘universal volatility model’ not fall into disgrace itself despite
its superlative name, and the market favors shift to a more encompassing model still, or perhaps
revert to an older and simpler model? Again, what is missing here is a theory of that extra step,
or new frontier in smile intelligence, which the barrier options represent, and empirical evidence
is just not good enough an argument.

A meta-model
It may sound as if I am hinting at some kind of superior model, or meta-model, which could see
what is happening when the ‘universal volatility model’ manages to match the barriers and the
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Heston model, or the local volatility model, does not. It would be a meta-model both in the sense
that it embeds the models of lower rank as specific instances and that it provides a critique of
those models. But then the ‘universal volatility model’ was supposed to be just that! As a matter
of fact, ‘universal volatility’ is not just a model, but a whole family of jump-diffusion models
combined with stochastic volatility and it can reproduce, at one extreme, a local volatility model
or a pure diffusion with variable diffusion coefficient, and at the other, pure stochastic volatility or
a Heston-like model. It can even assume a pure jump process. So while Lipton has proposed the
all-encompassing, overarching model we are looking for, he has not provided the critique. And
the reason is that he paused at the meta-level only to rush down into the one instance of his meta-
model which afforded an analytical solution, yet differed enough from Heston or local volatility
to deserve the name of ‘universal volatility model’. More importantly, Lipton has not taken the
extra step of calibrating his model to the barrier options a priori. The vanilla implied volatility
surface is all we have to go along with in order to establish the parameters of the model, and
agreement with the barriers is then checked a posteriori. We are left with the flat conclusion that
his vanilla-calibrated ‘universal volatility model’ predicts the right price for the barrier options,
for example the double-no-touch, for no other reason than that it hits the right balance between
the local volatility model which underestimates it and the Heston model which overestimates it.

Beginning of the smile problem
So at best, Lipton’s ‘universal volatility model’ looks like an adjustment or a refinement of pre-
existing models. ‘The market is subtler than you think, so the story goes. It doesn’t exactly behave
like any of the standard smile models you’ve been using, local volatility, stochastic volatility, pure
jump, but somewhat in the middle. And what else did you expect? The road to barrier options has
been concealed from the known tracks, but it definitely exists on our roadmap. This is precisely the
road that you can see now opening up in the middle. It may be a little harder to journey because
of the additional parameters and the tougher Fourier transform, but it is there alright.’ The reason
I dispute this statement is that the ‘universal volatility model’ is not in the middle, but is supposed
to be above. It shouldn’t really belong on the roadmap, but in the bureau revising the roadmap.
And the barrier option pricing problem is supposed to be the key to our real thinking about smiles,
and not just fall as an additional item on the list of things that one model can do and the others
cannot. As long as the smile problem was one of accounting for the implied volatility smile of the
vanillas, alternative explanations could compete on the same level and their relative advantages be
compared. One explanation, for instance, proposed that the coefficient of the Brownian diffusion
was not constant in the plane but varied according to Dupire’s formula. Another claimed that
the diffusion process was overlaid by Poisson jumps, whose size and intensity we would have to
determine by calibration. Yet another assumed that volatility was stochastic itself and correlated
with the underlying. Or indeed an explanation mixing all three kinds of process, diffusion, jumps,
and stochastic volatility, could be considered in turn. Any of these explanations was as good
as another as long as the challenge was to describe a certain way that reality should be, for a
vanilla smile to be the consequence. You may have had issues like overfitting or underfitting and
questions about the right number of degrees of freedom and whether or not you should allow for
term structure of the parameters, but these were technical issues.

However, the smile problem enters a new phase—or rather, it rises to a new level—when
it becomes one of trusting the proposed model for the hedging strategy one should follow. In
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fact, the vanilla option deltas produced by the competing models differ largely from one model
to another. For instance, the local volatility model predicts that the option price will evolve with
the underlying in such a way that the smile moves in the opposite direction to the underlying
movement. See Hagan (2002) for the analysis and criticism of that phenomenon. By contrast,
a stochastic volatility model, like Heston or SABR, predicts that the smile evolves in the same
direction as the underlying, or in other words, that implied volatility is a function of the option
moneyness. From descriptive metaphysics the problem has now moved to speculative metaphysics.
The question is no longer to explain the present smile, but to predict its evolution. In fact, the smile
problem, as I like to call it, really begins here. Indeed, any of the static descriptive explanations
of the vanilla smile is as good as another, and for that matter, no better than straightforward spline
interpolation! No one would have a problem with the smile, and no one would need a smile model,
if the problem was just the pricing of vanilla options under implied volatility smiles. Similarly,
the smile problem really begins with the question of pricing the barrier options. Since there is no
way we could interpolate a Black–Scholes implied volatility number for the barrier option from
the vanilla implied volatility surface—should we interpolate at the strike of the barrier option
or at its barrier?—we definitely need a smile model to form its price. And, surely enough, the
vanilla-calibrated competing smile models yield different barrier option prices, just as they yield
different vanilla option deltas. Speculative metaphysics back again.

The term ‘metaphysics’, however, seems to suggest that the truth must be lying somewhere
behind the phenomenon, only we have no other way to get hold of it at present but to speculate
about it. And now Lipton’s article on ‘universal volatility’ and Hagan’s article on SABR appear
as ways of re-embedding speculative metaphysics into descriptive metaphysics, by enlarging
the view. Both authors argue that their model describes reality accurately, only they draw a
more comprehensive picture of reality. Their picture now includes, beside the vanilla smile, the
observed barrier option prices in Lipton’s case, and the observed vanilla option deltas, in Hagan’s.
Both authors seem to ignore the possibility that the barrier pricing problem, or the vanilla delta
problem, may be adding a new dimension to the smile problem rather than a new side to reality,
and that both the barrier price structure and the vanilla delta structure may change, for a fixed
vanilla smile. What would Lipton do if empirical barrier option prices moved closer to the pattern
predicted by a local volatility model and away from his ‘universal volatility model’? And what
would Hagan do if empirical vanilla option deltas started reflecting a sticky-strike situation rather
than sticky-delta? Would they discard their models? As a matter of fact, different delta behaviors
and different barrier price structures have been empirically observed at different times and at
different places. See Derman’s paper on volatility regimes. In the end, Lipton and Hagan may be
just reflecting a reality specific to their particular market, foreign exchange options in Lipton’s
case, and interest rate options in Hagan’s. (Even worse, they may be reflecting a self-fulfilling
prophecy.) In other words, it may very well be that the vanilla option deltas have to be calibrated
into the model independently, the same way the barrier option prices should be. Indeed, we show
in another paper that the two problems are intimately linked, and that they hinge on the dynamics
of the smile.

‘What is there more to say about smiles?’ And the answer should be: everything! Any smile
model leaving untouched the question of the hedging strategy of the vanillas, or the question of
the pricing rationale of the barrier options, has not even begun to address the smile problem. And
it will not do to argue that the vanilla hedges have consistently been observed to be such and such
in my market, or that the barrier option prices happen to be such and such. The fallacy which
consists in arguing for the validity of a given smile model (‘universal volatility’, SABR) on the
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grounds of the empirical confirmation of the option delta or the barrier price it produces, is worse
than leaving these problems untouched. For it suggests that all there is to expect from the delta
or the barrier price is a distinction and a confirmation in retrospect, and that agreement with the
market delta or the market barrier price is the last word in the smile model contest. It suggests
that the problem is over, when we claim that it has only begun and that the delta and the barrier
are the first things we should really be writing about.

A departure from Black–Scholes
We may essentially define smiles as a radical departure from Black–Scholes. And we do not mean
it in the sense that the observed vanilla prices differ from the Black–Scholes uniform implied
volatility. For all we know, the Black–Scholes formula may have never existed. It may have
been altogether unimaginable that rehedging could take place continuously or that transactions
could be costless. And Black and Scholes, for that matter, may have had to come up with a more
complex formula, which implied itself a ‘volatility smile’ relative to the usual formula. What we
mean when we say that smiles are a radical departure from Black–Scholes, is that smiles really
begin when we are no longer able to apply what is really important in Black–Scholes. And what
is really important in Black–Scholes is not the formula or the usual simplifying assumptions
(continuous, frictionless trading) but the following two things: the dynamic hedging idea and the
idea of translating the option price into an implied volatility number. These are the true inventions
which have revolutionized our way of dealing with options.

Now translating the vanilla option price into an implied volatility number is still possible under
smiles: interpolation does that nicely. Therefore the smile problem doesn’t begin here. The smile
problem begins as soon as we depart from Black–Scholes and no longer have a fix on either the
hedge or the representative volatility number. It begins with the problem of the vanilla option
delta and the problem of the barrier option price representation. This is the reason why any smile
model that manages to match the market prices of the vanilla options, but offers no guarantee that
it will match their market deltas, or that it will match the market prices of barrier options, really
ends before the beginning of the smile problem. Lipton and Hagan offer no such guarantee. They
are just lucky enough that their model agrees with their market reality. The only way to offer the
guarantee is to build it into the model. This is a call to a voluntarist and active attitude. And now
we can understand why Lipton and Hagan, who had no means of controlling the barrier option
price structure, or the vanilla option delta structure, beyond the matching of the vanilla option
prices, could offer no other guarantee than just the passive belief in the existence of a truth out
there and the correspondence of their models with that truth.

Thinking after Black–Scholes
It will be my contention that Lipton and Hagan are the last representatives of a philosophical
tradition that misinterpreted the meaning of the Black–Scholes model and the significance of
its teaching. Philosophy and interpretation wouldn’t worry us much if they had no effect on
the science and remained confined in the preserve of reflection and meditation. It doesn’t really
matter to the Black–Scholes model how we interpret it or philosophize about it. The philosophy
of Black–Scholes (and more generally, the philosophy of derivative pricing) will be shown to
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matter, however, to the science and practice that followed Black–Scholes, namely the smiles. The
smile problem, as we face it today and insofar as it begins today, is essentially a philosophical
problem. Or so I will argue. To really think about smiles, one has first to learn to think about
Black–Scholes, and only then will one know how to think after Black–Scholes. Since smiles are
the radical departure from Black–Scholes, anyone misinterpreting Black–Scholes will misconstrue
the way of departing from it, and therefore will misunderstand smiles.

‘Departure from Black–Scholes’ and ‘thinking after Black–Scholes’ have to be understood
in the two senses of the terms. Smiles depart from Black–Scholes in the sense that they rad-
ically differ from it and that they take in, basically, anything that constitutes a breach of the
Black–Scholes paradigm. (And it is a big world out there! Jumps can induce volatility smiles,
but so can stochastic volatility, and default risk, and firm leverage, and discrete hedging, and
transactions costs. Any realistic derivative pricing model is a smile model, really.) And smiles
depart from Black–Scholes in the sense that they issue from it and that they are its generalization.
Or rather, they will strike us as the true generalization of Black–Scholes, once we identify the
strands in Black–Scholes that should really be generalized. Likewise, thinking about smiles is
thinking after Black–Scholes: thinking what is next and taking up where Black–Scholes has left
off. And it is thinking after Black–Scholes: thinking in the style of Black–Scholes and following
its teaching.

Now the reason why the tradition that followed Black–Scholes has misinterpreted it and missed
the thrust of the whole new science that was being born, is that it thought of the Black–Scholes
model as the description of some physical reality. It thought Black and Scholes were literally after
the lognormal distribution of asset returns and presumed that the Black–Scholes model was false
when it was faced with the first deviation from the predicted option prices, i.e. smiles. Yet this
tradition had nothing to say about the widespread continued use of the Black–Scholes pricing for-
mula in spite of the obvious inaccuracy of the underlying theoretical model, or about the apparent
ease with which traders just went ahead and plugged in a different implied volatility number for
every different option they wished to price. This phenomenon is sometimes referred to as ‘the
robustness, or the resilience, of the Black–Scholes model’. The traditional criticism explained it
away as being just a consequence of the simplicity and intuitive appeal of the Black–Scholes
model. And while it set out to find the theoretical substitute of Black–Scholes, it argued that
people using Black–Scholes were doing something they shouldn’t really do. The situation was
one of essential tension between the longevity and increasing popularity of the Black–Scholes
model (still the textbook model, still the option pricing benchmark) and the increasingly smaller
odds that the ‘true’ model may finally be found. For once correspondence to truth had become a
requirement and once the alternative to a false Black–Scholes had been philosophically reduced
to the quest for the true smile model and nothing but the true smile model, this quest could not just
stop at the first step and simply match the vanilla smile. The true model had to tell all the truth: it
had to match the barrier options, it had to produce the right hedges (witness the arguments from
Lipton and Hagan), and last but not least, it had to appeal to practitioners, not just academics,
and satisfy them that it was every bit as robust and functional as Black–Scholes.

Never before in the sciences had we witnessed such a big gap and such a great conflict between
the endeavor of the theorist looking for the true model and the behavior of the practitioner using
the model. While the continued ‘falsification’ (to use a Popperian term) of every successive model
had done nothing but excite the theorist and exacerbate his belief that the truth must be lying
ahead—forever lying ahead, never in the present model, always in the next—and while it had
done nothing but precipitate an escalation of arguments from his part instead of making him



DEFINITIVE SMILE MODEL: PART I 271

consider a radical alternative, the practitioner had no such exacting concerns and enjoyed a much
greater freedom of movement, literally making the truth rather than finding it, and making the
market in the vanillas and the exotics. Not mentioning that the exotic structures themselves were
being made up every day and that they created new markets every day. So are we to believe that
truth is just sitting there, waiting for the true model to find it, and that this moment of truth will
then at once embrace all the exotic structures that have come about or will have to come about?
Or might the theorist argue that truth is itself a relative and forever shifting notion and that he
doesn’t mind reiterating the whole nested sequence of models every time a new class of exotic
structures is introduced, no matter whether the new sequence and the new ‘history of science’
contradicted the previous ones? And how would we account for the transition regimes, where
truth is not yet itself an established notion and the only truth-maker is everybody’s guess about
what to count as an arbitrage?

REFERENCES
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Part II
Elie Ayache

Black–Scholes is right and significant only to the extent that it is not true. In this
chapter we look at what arises from a discussion of true versus right.

T
he so-called nesting of models seems to be the most recent fashionable exercise with
respect to the truth project in quantitative analysis. For instance Bakshi and Cao
(2003) argue in a recent empirical study that a double-jump option pricing model
taken from Duffie et al. (2000), which improves on the previous model (Bates 1996,
which in turn improved on the model before (Heston 1993) in adding underlying

jumps to stochastic volatility) in offering the possibility of adding volatility jumps correlated
to the underlying jumps, performs better both in matching the in-sample vanilla options and in
pricing the out-of-sample options. Not forgetting Lipton, who argues that the ‘universal volatility
model’ which improves on all of the local volatility, jump-diffusion and stochastic volatility
models in mixing all their characteristics, performs better in terms of pricing the exotic options.
The impression one gets from this argumentative zeal is one of a converging sequence of models,
bound to reach the final nest where truth must be lying. I wonder how the exotics would fare in
the double-jump model, and whether a bit of its vanilla explanatory power should not be sacrificed
in order to account for the barriers. At any rate, turning one’s attention to the exotics would imply
a break in the thrust of the argument of Bakshi and Cao and in the push to the truth about the
vanillas. The same break occurs in Lipton, if one starts worrying about the possibility of a change
in the price structure of the barriers for a given vanilla price structure.

The right alternative to a false Black–Scholes model, I think, is not to look for the true
substitute but to drop the whole metaphysical notion of truth in an option pricing model. Although
Black–Scholes is clearly false in the sense of not corresponding to empirical fact about option
prices, I want to argue that it is valid, in a new enlarged sense of validity. If the Black–Scholes
model is still being used by traders and practitioners all round, then it has got to be valid, and this
validity has got to be independent of the true–false dichotomy. In Chapter 21 I stressed that the
two important things in Black–Scholes are the notion of dynamic hedging and the synthesizing
of option prices in the implied volatility number. What the first really did is allow the traders to
link option value to a concrete rule of action. The necessity to update the option delta with the
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Black–Scholes formula and to rebalance the hedge every time the underlying moved was the real
reason why the Black–Scholes model was used in effect. Given the freedom that the option trader
enjoyed in setting up the implied volatility number, it should have been suspicious from the start
that the Black–Scholes formula might have had another motivation. Option valuation was made
effective through the concrete link that the delta provided with the underlying. And valuing options
effectively was no longer a matter of applying the pricing formula punctually and theoretically,
but required from the trader that he consistently monitored and followed his option trade. Surely
enough he could lock the option value by neutralizing his delta exposure, but this very move
suggested that he should get back to his option trade every now and then, and gave meaning to
this constant revisiting. Following the rule of delta hedging and delta rebalancing inscribed the
option value in a chain of coordinated actions instead of leaving it as a theoretical result on the
trader’s spreadsheet. It turned the option into a relational concept which now involved the whole
functional relationship with the underlying and no longer stood alone in abstraction.1

As for the second important thing—the expression of option prices in terms of implied volatil-
ity numbers—it provided the option traders with a new and very efficient language. Traders were
able to relate to the (implied) volatility they were buying, selling, or trading off, more easily
than they did to the naked option prices, and the Black–Scholes model which inspired all this
with its flat volatility assumption never was an impediment to the actual multiplication of implied
volatility numbers across the option chains, and to the capacity of the language to adapt itself to
situations pretty much at variance with the original Black–Scholes world.

The philosophical point I am trying to make, which will help banish truth altogether as an
irrelevant category in our case, is that the Black–Scholes model has bestowed meaning on options
and on option trading through the algorithm of delta hedging and the language of implied volatility,
and that meaning is not of such nature as to fall under the scrutiny of metaphysical truth or to be
deemed true or false. The realm of meaning, also known as the realm of validity, is philosophically
distinct from the realm of truth. And I claim that Black–Scholes is valid because meaning is a
much richer category than truth. Think that we can use language meaningfully, and for that
matter compose poems and create metaphors, or propose scientific theories and advance wild
interpretations of the physical world, without necessarily speaking truthfully.

True, the trader may be flying in the face of the theoretical Black–Scholes model when he
updates both the underlying price and the implied volatility number in his formula and rebalances
his hedge accordingly, still it cannot be claimed that he therefore represents a falsity. On the
contrary, delta hedging is the right thing to do—this is the main lesson from Black–Scholes—and
the trader doing it shows a perfect understanding of the meaning of options, even though he may
not know the truth about them. Now Black–Scholes may be the wrong model to use for delta
hedging in the presence of smiles (given jumps and stochastic volatility), and we may be willing to
start looking for the right model. The fact remains that the valid dichotomy here is the right–wrong
dichotomy, not the true–false. Right and wrong do not partition the space of reasons the same
way that true and false partition the space of facts. You may be doing or thinking the right thing
for the right kind of reason, without there necessarily being a fixed reference against which you
can justify your action or your thinking.

When Lipton and Hagan argue that their model is the right model because it gives the right
barrier option prices or produces the right option hedges, their argument is a truth claim in disguise,
not a validity claim. Hence our criticism. Indeed the barrier option prices and the vanilla option
hedges are the fixed reference they relate to and the ultimate truth-maker they seek. By contrast,
what would be a valid and much richer model (valid in our extended sense of validity, richer
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in the sense that validity and meaning precisely exceed truth)—in a word, what we would call
the right model—is a model where you would explicitly include the barrier option prices and
the vanilla option deltas in the calibration. And we say that the model is right (and not just true)
because it depends on no external, ‘fixed’ reference which may very well vary the next day, but
incorporates the variability of the reference itself. It turns the concept of the right smile model
into a relational and relative concept: the model will give the right barrier option prices, or the
right delta hedges, simply because it relies on a law of logic (even a syllogism) not on a matter
of fact; it will give the right price for the barrier options when it is calibrated to the right barrier
options, and it will produce the right delta hedges when it is calibrated to produce them.

The significance of Black–Scholes
To really assess the significance of the Black–Scholes model and what it meant to both the
science and the history of the science, and to fully appreciate what it takes to really think about
Black–Scholes, think what our thinking would look like if Black–Scholes were true. If hedging
were continuous and if we lived in a world of underlying Brownian motion with constant (non-
stochastic) volatility, options would be redundant. They wouldn’t exist except by name. All that
would remain to do is to buy or sell the underlying (and you would definitely find somebody
prepared to take the opposite bet, in this perfectly random world), or to invest an initial fee in
a certain combination of the underlying and the riskless bond, to be able to run a self-financing
dynamic trading strategy which may result, for instance, in being long the underlying at a certain
level, at a certain date, if it trades above that level at that date, or in being short it at a certain
level, if it trades below that level. Conversely, you may sell that combination for a certain fee, and
run the opposite self-financing dynamic trading strategy in order to preserve that fee, no matter
the outcome of the underlying at maturity. Options would exist only by name, and the underlying
would be the only thing worth buying or selling or trading in ever more sophisticated strategies.
And should it turn out that options must exist, by some metaphysical decree, beyond the mere
naming of those self-financing dynamic strategies, why would anyone buy them or sell them?
Wouldn’t everybody agree on their initial value and their outcome? Since you can personally
perfectly replicate any contingent payoff, all you would need is a party to your trades in the
underlying. No option market per se would come to exist.

What we are really saying is that if Black–Scholes were true, what Black–Scholes would
really have to say (‘Options exist and they can be traded. You can buy them, sell them and even
hedge them, etc.’) would not be true or false, or right or wrong. It would really be unsayable.
Black–Scholes would really have nothing to say. Fortunately, Black–Scholes is not true, and
this is why we have something instead of nothing. As Alberto Coffa would say, ‘the unsayable
is not true, but there is something it is right about’. And what Black–Scholes is right about is
precisely this, in Black–Scholes, which looks outside the closed formula and outside the complete
market paradigm and its tautological consequence for options. Black–Scholes is precisely right
in having bestowed on options and option markets the meaning that we have been talking about.
And what is so amazing about the Black–Scholes model, and definitely distinguishes it, and
the history of the science that will follow from it, from any other history of science, is the
extraordinary philosophical pressure that is exerted on it the minute it is subjected to reflection.
Never before has a model or a theory or a framework been so finished and so closed on paper and
so eager to crack open under philosophical questioning. Black–Scholes is right insofar as it is not
true. Anything meaningful, and historical, and thought-provoking that Black–Scholes may have
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to say, has nothing to do with Black–Scholes and everything to do with smiles. Options exist
(independently of their hedging strategies of course: otherwise how could we even start talking
of hedging them?) only insofar as the hedge is not perfect and there is leeway in the choice of
the hedging strategy. And option markets exist only insofar as the language of implied volatility
has got more than one word.

The process of objectification and the true science
in Black–Scholes
Now we can see why the two most significant strands in Black–Scholes, the dynamic hedging
story and the implied volatility story, are the true things worth generalizing and reflecting upon.
Once the philosophical picture is set in the right frame, and the Black–Scholes model is no longer
followed for the something true but for the something right that it has to say, we understand
where all the robustness comes from. Black–Scholes seems so inseparable from options and
option talk because it was first to insert the option value into the algorithm of delta hedging and
the language of implied volatility. It thereby granted options a special kind of being: a ‘being
objective’ which is at once more significant than ‘being a name’ and far more robust (far less
risky and unstable) than ‘being true’. The Black–Scholes model turned options into scientific
and linguistic objects. The original theory may be simplistic and we may have abused of the
original single-worded language, the fact remains that the delta hedging algorithm has contributed
to the process of ‘objectification’ of the option (as a neo-Kantian would say), or in other words
to ‘the construction of its being as object through conceptual determination’. As for the implied
volatility language, it has provided an effective translation of option prices and option markets.
When traders relate to the Black–Scholes model, they do not really care whether the model, as
model, is true, and whether it relates to some transcendent reality. All they care about are the
objects and the functional relations between them.2 They care about the option and the delta as
inter-operative concepts. What I am trying to say is that the scientific moment that one should
try to capture in Black–Scholes is the moment of the sending of the strands (Brownian motion
as the simplest way of breathing life and time value in the option, implied volatility as the single
knob to calibrate the model with, and dynamic replication as the operative rule), not the moment
when the strands meshed with each other in a single fateful knot, and gave us the closed-form
formula and the complete market, thus ending philosophical thinking before it even started.

The science that we would like to capture and nurture in Black–Scholes is not the bit that
argues from Brownian motion to the continuous perfect replication to the Black–Scholes PDE to
the analytical formula. For this is only a clever mixture of stochastic calculus and no-arbitrage
principle, which takes advantage of the continuous-path property of Brownian motion and the
ability of a continuously rebalanced self-financing portfolio to be immune against the Brownian
innovation. This ‘pencil-and-paper’ Black–Scholes does not really interest us. What science we
see in Black–Scholes is the part that gave birth to the history of the science. It is the part con-
cerned with the objectification that we talked about earlier. As our neo-Kantian philosopher of
science would go on to say: ‘The fact of science is the fact of objectification at its most devel-
oped stage, and philosophy’s task is to grasp the categories of objectification governing scientific
development.’3 The part in Black–Scholes corresponding to the ‘fact of science’ is no doubt the
part that makes options objective, not the one that makes them redundant—the part that initiates
philosophical thinking, not the one that evacuates it. It is the part which literally occurs outside
the closed-form formula and speaks distinctively of options, of option hedges, and option implied
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volatility smile. It wouldn’t cross the mind of the first option trader anyhow that options may be
redundant, and that they may not have their own market, quite independently of the underlying.

The history of the science
Now think that the original motivation of Black–Scholes and Merton was to provide the traders
with tools to rationally price and possibly arbitrage those options! Surely enough, the assumption
of lognormal distribution of asset returns must have seemed to them the most attractive initial step
to get the problem going. And how surprised Black and Scholes must have been to find, as a result
of this single step, that options and option markets were being dismissed completely! If the history
of the science were to be rewritten, Black and Scholes would really have to keep their paper hidden
from the eyes of the public. Any option pricing and hedging model would have been good for
publishing, except the original Black–Scholes! This is why we’ve been urging that, although the
Black–Scholes model is undoubtedly a historic finding and although the Black–Scholes language
still permeates the totality of our conceptual dealings with options—even the word ‘smiles’
implicitly refers to Black–Scholes—we should really think of options as if Black–Scholes had
never existed. This means we should not try to save the complete market paradigm at all costs,
or look preferentially for models which result in analytical pricing formulae. All these things, all
these worries and the research programs that they spawned, should really disappear from our sight
when we interpreters set new eyes on the science and the history of the science. Now that we
know about jump-diffusion and stochastic volatility and discrete hedging and transactions costs
and incomplete markets, and now that the actual history of the science has shown us the necessity
to know about all this, how could a thin coincidence such as perfect replication under Brownian
motion and the analytical tractability of the Black–Scholes model matter any longer? How could
such a contingent fact even strike us as something worth mentioning in our rewriting process?
History may originate from a degenerate case, but the history of a science, in the sense of the
philosophical rewriting and grounding of the science, may not.

The trouble with Black–Scholes, however, is that history (real history, not the philosopher’s)
could not have been written otherwise, and perhaps this singular fate is the most interesting part
of the interpretive story. Indeed, how could Black and Scholes resist publishing their paper, and
how could the public not welcome it instantly,4 when it allowed the exact pricing (and hedging)
of European options, and freed the valuation of contingent claims from the question of risk
preferences? And how could option traders resist talking of implied volatility instead of option
price, when Black–Scholes had shown them how to get rid of any other determinant of value
through delta hedging, and left them with volatility as the only measure of cheapness and dearness
of options? Or rather, once delta hedging had eliminated first-order market risk, the option trader
was left with a sense of option cheapness and dearness directly related to the risks he knew
Black–Scholes could not cover in reality : gamma risk and vega risk. And here you can see the
creation of Black–Scholes starting to act contrary to Black–Scholes. For what did the option
traders do once they got hold of the Black–Scholes formula and measured the ease with which it
allowed them to connect the value of an option and a volatility number? Create volatility smiles!
So what Black–Scholes has done in the end is provide the option traders with the best way to
talk and to act outside Black–Scholes!

The option language
And what would it matter anyhow if traders spoke an unruly and ‘unregimented’ language? Isn’t
that always the case with natural languages? Accusing the traders of inconsistency on the grounds
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of their multi-volatility talk is the same as arguing that every competent speaker, in every natural
language, can sooner or later be forced into a contradiction, if the questioner pushes her strictly
from antecedent to consequent and the black and white logic of truth tables is applied to her
utterances. Is it not precisely the lesson of the philosophy of language (at least after Wittgenstein)
that logic shall not be the judge of language but the other way around, and that both the notions
of logic and ‘matter of fact’, so dear to the heart of the empiricist, shall themselves be relative
to a language? Must there not be, as Richardson says, ‘a structure inherent in any language that
provides the framework within which that language can first express any matters of fact’? Is
the whole notion of ‘matter of fact’ not itself ‘internal to a logico-linguistic framework’? And
‘but for a prior specification of a logical structure’, wouldn’t the very notion of ‘fact’ be itself
without sense? Language is robust precisely in the sense that one should not hold reality (or logic)
fixed and try to vary the propositions of the language in order to come up with a falsity (or a
contradiction) which would invalidate the language. On the contrary, one should hold language
to be valid no matter what—for it is language that makes the world not the world that makes
the language—and come to accept the fact that the contexts of utterance and their background
logic may themselves be changing, in a word, that the world may itself be changing and that
every speaker may be tacitly aware of it, every time some surface utterance strikes one as false or
other-worldly. Language is not true or false, and it is not supposed to be a faithful picture of the
facts. ‘Our words do not carve up nature at the joints’ and nature does not care with how many
tenses we may conjugate our verbs. Language is robust in the sense that it allowed us to travel
safely through our thousands of years of evolution and to survive its many changing worlds. It is
robust in the sense that we are able to have revolutions which overturn our most deeply entrenched
conceptual schemes (such as Gödel’s theorem, Quantum Mechanics), yet we make sense of them
with language. It is robust in the sense that we are able to do philosophy, to be reflective, etc.

Black–Scholes is valid and robust precisely in the sense that natural language is. Once we
agree that what is meaningful and significant in Black–Scholes does not lie on the side of the
lognormal assumption and the Black–Scholes formula—not on the side of complete markets
and perfect attainability of the contingent payoffs—but on the side of the dynamic relations
that Black–Scholes has helped establish between the option, the hedge, the implied volatility
representation and the movements of the underlying, we stop thinking of Black–Scholes as a
theoretical model and start thinking about it as language. So long as the trader knows what he is
doing, it doesn’t matter whether he changes the implied volatility parameter between two option
trades, or between two delta readjustments. He is competent in that language. The option has
first to exist, and second we have to start thinking of hedging it. It is the privilege of no option
pricing model to bestow existence on options, even less so to rob them of their existence like
the theoretical Black–Scholes does. No option pricing model5 is even entitled to establish the
prices of the vanilla options in place of their own market. We’re not even sure that a smile model
may be entitled to price the exotic options without somehow relying on their own market. All an
option pricing model is welcome to do is provide the trader with a language, or in other words, a
coherent way of travelling across the vagaries of the option world and of surviving its overturns.
A language: that is, a conceptual scheme, a Weltanschauung.

And this general remark applies to the Black–Scholes model as well! Not the theoretical,
vacuous Black–Scholes, but the meaningful, critical6 Black–Scholes. There is indeed a sense in
which Black–Scholes is the first smile model! Don’t the option traders speak of Black–Scholes
implied volatilities, and use Black–Scholes hedges, in real-life option markets? And aren’t they
confident of what they’re doing because they know everybody speaks the same language? The
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only practical use of Black–Scholes, after all, is to let you travel from point A to point B. And you
are basically OK travelling with Black–Scholes so long as the delta (possibly adjusted to account
for the change in implied volatility) takes care of first-order market risk,7 and so long as you are
confident that everybody will still be speaking the Black–Scholes language at point B (having
made the same implied volatility correction that you did). Black–Scholes, and for that matter any
option pricing model, is only here after all to ensure safe travel through a price difference, not to
quote an absolute price. Physics is essentially differential. And the key concept in every option
model should be the option delta, not the option theoretical value.

The option delta
Delta is the critical concept here, in the two senses of the term. The trader’s risk critically depends
on the delta of his option position; in other words delta is the one important variable he will have
to worry about after the inception of the trade. And delta is a critical concept in the sense that
the entirety of our philosophical critique of option models has hinged on it so far, from our first
contending that the smile problem really begins with the problem of the delta (or equivalently the
problem of barrier option pricing), to our firm belief that the rule of delta hedging and rebalancing
is the dispenser of scientific objectivity, to our conclusion that Black–Scholes is right and valid
and meaningful to the extent that the Black–Scholes delta should not make the option redundant.
Delta is the philosophically fertile notion and the entry point to all the different strands we’ve
been exploring. First of all, it is the delta hedging idea which has made the language of implied
volatility effective. Second, you can look at the delta from any side you wish, depending on
your philosophical inclination. When it is part of the Black–Scholes derivation and formal theory
is your sole concern, delta hedging leads to the strict option pricing formula that you know: it
gives you the law that option prices obey. When it is viewed against the neo-Kantian background
of relational concepts and the priority of objectivity over truth, delta embodies the operative
rule which conceptually determines the option. When it is reinserted in the pragmatic context of
actual hedging, which necessitates a real-time trader and his actual sense of opportunity, delta is
your pathway to freedom: you can decide to over-hedge or under-hedge, optimally hedge, hedge
discretely, not hedge at all, etc.

All of this hints at the idea that, once the options and their market are given and firmly given
(contrary to their evaporation by Black–Scholes magic), we should first and foremost preoccupy
ourselves with the hedge. Hedging is the key; option value is only a derivative notion. As for the
option price, it is the purely opportunistic, almost political, variation of the option value. Hedging
is the critical concept. For instance, we will show later that proposals to correlate default risk with
the process of the underlying equity, which may sometimes go as far as invoking grandiloquent
structural models of the firm, have as sole motivation the ability to produce higher equity deltas
for the convertible bonds than in standard models, or indeed to generate such deltas for the straight
debt, exactly like the trader would expect in real life. In this case as in many others, it is matching
the delta that is the heart of the matter. Nobody really cares about the full underlying process, or
the even less observable capital structure of the issuing firm.

FOOTNOTES & REFERENCES

1. We are here reiterating the neo-Kantian view of concept formation. In Alan Richardson’s
(1998) words: ‘Perhaps the most important aspect of the neo-Kantian project [. . .] is the
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lesson it took from the development of pure mathematics and mathematical physics in the
nineteenth century. For the neo-Kantians, this development exhibits a new type of concept
formation that makes evident the functional nature of objective concepts and stands opposed
to the traditional notion of concept formation via the process of abstraction.’
2. Again, we are echoing the neo-Kantian view of scientific objects as individuated via their
relations to one another. They are neither bundles of subjective impressions (following the
philosophical doctrine of idealism) nor pieces of an absolute reality (following the philosophical
doctrine of realism). ‘This view’, writes Richardson, ‘clearly contrasts with any naı̈ve realism
that speaks of objective knowledge as objective not because of the systematic interrelations of
the objects in the system but by relations to transcendent objects outside the system. Similarly,
it is inconsistent with any idealism that founds objectivity in the subjective experience of any
one individual, or that denies objectivity to knowledge in general.’
3. Steven Galt Crowell, Husserl, Heidegger and the Space of Meaning, Northwestern University
Press, 2001.
4. I am being guilty of history-rewriting, even here. For it appears that Black and Scholes had
difficulty getting their 1973 paper accepted for publication. But this serves my interpretive
point exactly. What I have called the ‘significance’ and the ‘meaning’ of Black–Scholes was
not first apparent to the editor’s eye. He could not have guessed the history that was to
follow—the history of volatility trading—and the generations of volatility traders that were
to come, from what looked, on the surface, like a simple analytical formula. In a word, he
could not have guessed about the later philosophy of Black–Scholes, the part which came
after Black–Scholes and that we have aptly identified with the smiles. Like I said, the ‘fact of
science’ in Black–Scholes does not belong to the 1973 Black–Scholes.
5. From now on, ‘option pricing model’ will mean ‘smile model’, because we said Black–Scholes
shouldn’t really exist and smiles are the only thing there is.
6. Critical in the sense of the Kantian critique of metaphysics, and the subsequent construction
of the objectivity of scientific theories.
7. Of course you will not be OK if jumps in the underlying occur between A and B. But we
group jump risk under ‘gamma risk’ and it is second-order in this sense, not in the sense of the
magnitude of the loss.

� Bakshi, G. and Cao, C. (2003) Risk-neutral kurtosis, jumps and option pricing: Evidence
from 100 most actively traded firms on the CBOE. Working Paper, Smith School of Business,
University of Maryland.
� Bates, D.S. (1996) Jumps and stochastic volatility: Exchange rate processes implicit in
deutsche mark options. Review of Financial Studies, 9(1), Winter, 69–107.
� Crowell, S.G. (2001) Husserl, Heidegger and the Space of Meaning, Northwestern University
Press.
� Duffie D., Pan, J. and Singleton, K.J. (2000) Transform analysis and asset pricing for affine
jump-diffusions. Econometrica, 68, 1343–1376.
� Heston, S.L. (1993) A closed-form solution for options with stochastic volatility with
applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.
� Richardson, A. (1998) Carnap’s construction of the world: The aufbau and the emergence of
logical empiricism, Cambridge University Press.



23
A Perfect Calibration!
Now What?
Wim Schoutens,∗ Erwin Simons∗∗ and Jurgen
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We show that several advanced equity option models incorporating stochastic volatil-
ity can be calibrated very nicely to a realistic option surface. More specifically,
we focus on the Heston Stochastic Volatility model (with and without jumps in the
stock price process), the Barndorff-Nielsen–Shephard model and Lévy models with
stochastic time. All these models are capable of accurately describing the marginal
distribution of stock prices or indices and hence lead to almost identical European
vanilla option prices. As such, we can hardly discriminate between the different pro-
cesses on the basis of their smile–conform pricing characteristics. We therefore are
tempted to apply them to a range of exotics. However, due to the different structure
in path behaviour between these models, the resulting exotics prices can vary signif-
icantly. It motivates a further study on how to model the fine stochastic behaviour of
assets over time.

1 Introduction
Since the seminal publication of the Black–Scholes model in 1973, we have witnessed a vast effort
to relax a number of its restrictive assumptions. Empirical data show evidence for non-normal
distributed log-returns together with the presence of stochastic volatility. Nowadays, a battery of
models is available which captures non-normality and integrates stochastic volatility. We focus
on the following advanced models: the Heston Stochastic Volatility Model (Heston 1993) and its
generalization allowing for jumps in the stock price process (see e.g. Bakshi et al. 1997), the
Barndorff-Nielsen–Shephard model introduced in Barndorff-Nielsen and Shephard (2001) and
Lévy models with stochastic time introduced by Carr (et al. 2001). This class of models is built

Contact addresses: ∗K.U. Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium and ∗∗ING SWE, Financial Mod-
eling, Marnixlaan 24, B-1000 Brussels, Belgium.
E-mail: Wim.Schoutens@wis.kuleuven.ac.be, Erwin.Simons@ing.be, Jurgen.Tistaert@ing.be
The views expressed in this chapter are those of the authors and do not necessarily reflect the positions of their employers.



282 THE BEST OF WILMOTT 2

out of a Lévy process which is time-changed by a stochastic clock. The latter induces the desired
stochastic volatility effect.

Section 2 elaborates on the technical details of the models and we state each of the closed-form
characteristic functions. The latter are the necessary ingredients for a calibration procedure, which
is tackled in section 3. The pricing of the options in that framework is based on the analytical
formula of Carr and Madan (1998). We will show that all of the above models can be calibrated
very well to a representative set of European call options. Section 4 describes the simulation
algorithms for the stochastic processes involved. Armed with good calibration results and powerful
simulation tools, we will price a range of exotics. Section 5 presents the computational results
for digital barriers, one-touch barriers, lookbacks and cliquet options under the different models.
While the European vanilla option prices hardly differ across all models considered, we obtain
significant differences in the prices of the exotics. The chapter concludes with a formal discussion
and gives some directions for further research.

2 The models
We consider the risk-neutral dynamics of the different models. Let us shortly define some concepts
and introduce their notation.

Let S = {St , 0 ≤ t ≤ T } denote the stock price process and φ(u, t) the characteristic function
of the random variable log St , i.e.,

φ(u, t) = E[exp(iu log(St ))].

If for every integer n, φ(u, t) is also the nth power of a characteristic function, we say that the
distribution is infinitely divisible. A Lévy process X = {Xt , t ≥ 0} is a stochastic process which
starts at zero and has independent and stationary increments such that the distribution of the
increment is an infinitely divisible distribution. A subordinator is a non-negative non-decreasing
Lévy process. A general reference on Lévy processes is Bertoin (1996), for applications in finance
see Schoutens (2003).

The risk-free continuously compounded interest rate is assumed to be constant and denoted
by r . The dividend yield is also assumed to be constant and denoted by q.

2.1 The Heston Stochastic Volatility model

The stock price process in the Heston Stochastic Volatility model (HEST) follows the
Black–Scholes SDE in which the volatility is behaving stochastically over time:

dSt

St

= (r − q)dt + σtdWt, S0 ≥ 0,

with the (squared) volatility following the classical Cox–Ingersoll–Ross (CIR) process:

dσ 2
t = κ(η − σ 2

t )dt + θσtdW̃t , σ0 ≥ 0,

where W = {Wt, t ≥ 0} and W̃ = {W̃t , t ≥ 0} are two correlated standard Brownian motions such
that Cov[dWtdW̃t ] = ρdt .
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The characteristic function φ(u, t) is in this case given by Heston (1993) or Bakshi et al.
(1997):

φ(u, t) = E[exp(iu log(St ))|S0, σ 2
0 ]

= exp(iu(log S0 + (r − q)t))

× exp(ηκθ−2((κ − ρθui − d)t − 2 log((1 − ge−dt )/(1 − g))))

× exp(σ 2
0 θ−2(κ − ρθ iu − d)(1 − e−dt )/(1 − ge−dt )),

where

d = ((ρθui − κ)2 − θ2(−iu − u2))1/2, (1)

g = (κ − ρθui − d)/(κ − ρθui + d). (2)

2.2 The Heston Stochastic Volatility model with jumps
An extension of HEST introduces jumps in the asset price (Bakshi et al. 1997). Jumps occur as
a Poisson process and the percentage jump-sizes are lognormally distributed. An extension also
allowing jumps in the volatility was described in Knudsen and Nguyen-Ngoc (2003). We opt to
focus on the continuous version and the one with jumps in the stock price process only.

In the Heston Stochastic Volatility model with jumps (HESJ), the SDE of the stock price
process is extended to yield:

dSt

St

= (r − q − λµJ )dt + σtdWt + JtdNt, S0 ≥ 0,

where N = {Nt, t ≥ 0} is an independent Poisson process with intensity parameter λ > 0, i.e.
E[Nt ] = λt . Jt is the percentage jump size (conditional on a jump occurring) that is assumed to
be lognormally, identically and independently distributed over time, with unconditional mean µJ .
The standard deviation of log(1 + Jt ) is σJ :

log(1 + Jt ) ∼ Normal

(
log(1 + µJ ) − σ 2

J

2
, σ 2

J

)
.

The SDE of (squared) volatility process remains unchanged:

dσ 2
t = κ(η − σ 2

t )dt + θσtdW̃t , σ0 ≥ 0,

where W = {Wt, t ≥ 0} and W̃ = {W̃t , t ≥ 0} are two correlated standard Brownian motions such
that Cov[dWtdW̃t ] = ρdt . Finally, Jt and N are independent, as well as of W and of W̃ .

The characteristic function φ(u, t) is in this case given by:

φ(u, t) = E[exp(iu log(St ))|S0, σ 2
0 ]

= exp(iu(log S0 + (r − q)t))

× exp(ηκθ−2((κ − ρθui − d)t − 2 log((1 − ge−dt )/(1 − g))))

× exp(σ 2
0 θ−2(κ − ρθ iu − d)(1 − e−dt )/(1 − ge−dt )),

× exp(−λµJ iut + λt ((1 + µJ )iu exp(σ 2
J (iu/2)(iu − 1)) − 1)),

where d and g are as in (1) and (2).



284 THE BEST OF WILMOTT 2

2.3 The Barndorff-Nielsen–Shephard model

This class of models, denoted by BN–S, were introduced in Barndorff-Nielsen and Shephard
(2001) and have a comparable structure to HEST. The volatility is now modeled by an Ornstein
Uhlenbeck (OU) process driven by a subordinator. We use the classical and tractable example of
the Gamma–OU process. The marginal law of the volatility is Gamma-distributed. Volatility can
only jump upwards and then it will decay exponentially. A co-movement effect between up-jumps
in volatility and (down)-jumps in the stock price is also incorporated. The price of the asset will
jump downwards when an up-jump in volatility takes place. In the absence of a jump, the asset
price process moves continuously and the volatility decays also continuously. Other choices for
OU-processes can be made, we mention especially the Inverse Gaussian OU process, leading also
to a tractable model.

The squared volatility now follows an SDE of the form:

dσ 2
t = −λσ 2

t dt + dzλt , (3)

where λ > 0 and z = {zt , t ≥ 0} is a subordinator as introduced before.
The risk-neutral dynamics of the log-price Zt = log St are given by

dZt = (r − q − λk(−ρ) − σ 2
t /2)dt + σtdWt + ρdzλt , Z0 = log S0,

where W = {Wt, t ≥ 0} is a Brownian motion independent of z = {zt , t ≥ 0} and where k(u) =
log E[exp(−uz1)] is the cumulant function of z1. Note that the parameter ρ is introducing a
co-movement effect between the volatility and the asset price process.

As stated above, we chose the Gamma–OU process. For this process z = {zt , t ≥ 0} is a
compound–Poisson process:

zt =
Nt∑

n=1

xn, (4)

where N = {Nt, t ≥ 0} is a Poisson process with intensity parameter a, i.e. E[Nt ] = at and
{xn, n = 1, 2, . . . } is an independent and identically distributed sequence, and each xn follows an
exponential law with mean 1/b. One can show that the process σ 2 = {σ 2

t , t ≥ 0} is a stationary
process with a marginal law that follows a Gamma distribution with mean a and variance a/b. This
means that if one starts the process with an initial value sampled from this Gamma distribution,
at each future time point t , σ 2

t is also following that Gamma distribution. Under this law, the
cumulant function reduces to:

k(u) = log E[exp(−uz1)] = −au(b + u)−1.

In this case, one can write the characteristic function (Barndorff-Nielsen et al. 2002) of the log
price in the form:

φ(u, t) = E[exp(iu log St )|S0, σ0]

= exp
(
iu(log(S0) + (r − q − aλρ(b − ρ)−1)t)

)
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× exp
(−λ−1(u2 + iu)(1 − exp(−λt))σ 2

0 /2
)

× exp

(
a(b − f2)

−1
(

b log

(
b − f1

b − iuρ

)
+ f2λt

))
,

where

f1 = f1(u) = iuρ − λ−1(u2 + iu)(1 − exp(−λt))/2,

f2 = f2(u) = iuρ − λ−1(u2 + iu)/2.

2.4 Lévy models with stochastic time

Another way to build in stochastic volatility effects is by making time stochastic. Periods with high
volatility can be looked at as if time runs faster than in periods with low volatility. Applications
of stochastic time change to asset pricing go back to Clark (1973), who models the asset price as
a geometric Brownian motion time-changed by an independent Lévy subordinator.

The Lévy models with stochastic time considered in this chapter are built out of two indepen-
dent stochastic processes. The first process is a Lévy process. The behaviour of the asset price
will be modeled by the exponential of the Lévy process suitably time-changed. Typical examples
are the Normal distribution, leading to the Brownian motion, the Normal Inverse Gaussian (NIG)
distribution, the Variance Gamma (VG) distribution, the (generalized) hyperbolic distribution,
the Meixner distribution, the CGMY distribution and many others. An overview can be found
in Schoutens (2003). We opt to work with the VG and NIG processes for which simulation issues
become quite standard.

The second process is a stochastic clock that builds in a stochastic volatility effect by making
time stochastic. The above-mentioned (first) Lévy process will be subordinated (or time-changed)
by this stochastic clock. By definition of a subordinator, the time needs to increase and the process
modeling the rate of time change y = {yt , t ≥ 0} needs also to be positive. The economic time
elapsed in t units of calendar time is then given by the integrated process Y = {Yt , t ≥ 0} where

Yt =
∫ t

0
ysds.

Since y is a positive process, Y is an increasing process. We investigate two processes y which
can serve for the rate of time change: the CIR process (continuous) and the Gamma–OU process
(jump process).

We first discuss NIG and VG and subsequently introduce the stochastic clocks CIR and
Gamma–OU. In order to model the stock price process as a time-changed Lévy process, one
needs the link between the stochastic clock and the Lévy process. This role will be fulfilled by the
characteristic function enclosing both independent processes as described at the end of this section.

2.4.1 NIG Lévy process An NIG process is based on the Normal Inverse Gaussian (NIG) dis-
tribution, NIG(α, β, δ), with parameters α > 0, −α < β < α and δ > 0. Its characteristic function
is given by:

φNIG(u; α, β, δ) = exp
(
−δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
.
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Since this is an infinitely divisible characteristic function, one can define the NIG process X(NIG) =
{X(NIG)

t , t ≥ 0}, with X
(NIG)
0 = 0, as the process having stationary and independent NIG dis-

tributed increments. So, an increment over the time interval [s, s + t] follows a NIG(α, β, δt)

law. An NIG process is a pure jump process. One can relate the NIG process to an Inverse
Gaussian time-changed Brownian motion, which is particularly useful for simulation issues (see
section 4.1).

2.4.2 VG Lévy process The characteristic function of the VG(C, G, M), with parameters C >

0, G > 0 and M > 0 is given by:

φV G(u; C, G, M) =
(

GM

GM + (M − G)iu + u2

)C

.

This distribution is infinitely divisible and one can define the VG process X(V G) = {X(V G)
t , t ≥ 0}

as the process which starts at zero, has independent and stationary increments and where the
increment X

(V G)
s+t − X

(V G)
s over the time interval [s, s + t] follows a VG(Ct, G, M) law. In Madan

et al. (1998) it was shown that the VG process may also be expressed as the difference of two
independent Gamma processes, which is helpful for simulation issues (see section 4.2).

2.4.3 CIR stochastic clock Carr et al. (2001) use as the rate of time change the CIR process
that solves the SDE:

dyt = κ(η − yt )dt + λy
1/2
t dWt,

where W = {Wt, t ≥ 0} is a standard Brownian motion. The characteristic function of Yt (given
y0) is explicitly known (see Cox et al. 1985):

ϕCIR(u, t; κ, η, λ, y0) = E[exp(iuYt )|y0]

= exp(κ2ηt/λ2) exp(2y0iu/(κ + γ coth(γ t/2)))

(cosh(γ t/2) + κ sinh(γ t/2)/γ )2κη/λ2 ,

where

γ =
√

κ2 − 2λ2iu.

2.4.4 Gamma–OU stochastic clock The rate of time change is now a solution of the SDE:

dyt = −λytdt + dzλt , (5)

where the process z = {zt , t ≥ 0} is as in (4) a compound Poisson process. In the Gamma–OU
case the characteristic function of Yt (given y0) can be given explicitly.

ϕ
−OU(u; t, λ, a, b, y0) = E[exp(iuYt )|y0]

= exp

(
iuy0λ

−1(1 − e−λt )

+ λa

iu − λb

(
b log

(
b

b − iuλ−1(1 − e−λt )

)
− iut

))
.
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2.4.5 Time-changed Lévy process Let Y = {Yt , t ≥ 0} be the process we choose to model our
business time (remember that Y is the integrated process of y). Let us denote by ϕ(u; t, y0) the
characteristic function of Yt given y0. The (risk-neutral) price process S = {St , t ≥ 0} is now
modeled as follows:

St = S0
exp((r − q)t)

E[exp(XYt )|y0]
exp(XYt ), (6)

where X = {Xt, t ≥ 0} is a Lévy process. The factor exp((r − q)t)/E[exp(XYt )|y0] puts us imme-
diately into the risk-neutral world by a mean-correcting argument. Basically, we model the stock
price process as the ordinary exponential of a time-changed Lévy process. The process incorpo-
rates jumps (through the Lévy process Xt ) and stochastic volatility (through the time change Yt ).
The characteristic function φ(u, t) for the log of our stock price is given by:

φ(u, t) = E[exp(iu log(St ))|S0, y0]

= exp(iu((r − q)t + log S0))
ϕ(−iψX(u); t, y0)

ϕ(−iψX(−i); t, y0)iu
, (7)

where

ψX(u) = log E[exp(iuX1)];

ψX(u) is called the characteristic exponent of the Lévy process.
Since we consider two Lévy processes (VG and NIG) and two stochastic clocks (CIR and

Gamma–OU), we will finally end up with four resulting models abbreviated as VG–CIR,
VG–OU
, NIG–CIR and NIG–OU
.

Because of (time)-scaling effects, one can set y0 = 1, and scale the present rate of time change
to one. More precisely, we have that the characteristic function φ(u, t) of (7) satisfies:

φNIG−CIR(u, t; α, β, δ, κ, η, λ, y0) = φNIG−CIR(u, t; α, β, δy0, κ, η/y0, λ/
√

y0, 1),

φNIG−
OU(u, t; α, β, δ, λ, a, b, y0) = φNIG−
OU(u, t; α, β, δy0, λ, a, by0, 1),

φV G−CIR(u, t; C, G, M, κ, η, λ, y0) = φVG−CIR(u, t; Cy0, G, M, κ, η/y0, λ/
√

y0, 1),

φV G−
OU(u, t; C, G, M, λ, a, b, y0) = φV G−
OU(u, t; Cy0, G, M, λ, a, by0, 1).

Actually, this time-scaling effect lies at the heart of the idea of incorporating stochastic volatility
through making time stochastic. Here, it comes down to the fact that instead of making the
volatility parameter (of the Black–Scholes model) stochastic, we are making the parameter δ in
the NIG case and the parameter C in the VG case stochastic (via the time). Note that this effect
does not only influence the standard deviation (or volatility) of the processes, also the skewness
and the kurtosis are now fluctuating stochastically.

3 Calibration
Carr and Madan (1998) developed pricing methods for the classical vanilla options which can be
applied in general when the characteristic function of the risk-neutral stock price process is known.
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Let α be a positive constant such that the αth moment of the stock price exists. For all stock
price models encountered here, typically a value of α = 0.75 will do fine. Carr and Madan then
showed that the price C(K, T ) of a European call option with strike K and time to maturity T is
given by:

C(K, T ) = exp(−α log(K))

π

∫ +∞

0
exp(−iv log(K))�(v)dv, (8)

where

�(v) = exp(−rT )E[exp(i(v − (α + 1)i) log(ST ))]

α2 + α − v2 + i(2α + 1)v
(9)

= exp(−rT )φ(v − (α + 1)i, T )

α2 + α − v2 + i(2α + 1)v
. (10)

Using fast Fourier transforms, one can compute within a second the complete option surface on
an ordinary computer. We apply the above calculation method in our calibration procedure and
estimate the model parameters by minimizing the difference between market prices and model
prices in a least-squares sense.

The data set consists of 144 plain vanilla call option prices with maturities ranging from less
than one month up to 5.16 years. These prices are based on the volatility surface of the Eurostoxx
50 index, having a value of 2461.44 on October 7th, 2003. The volatilities can be found in
Table 4. For the sake of simplicity and to focus on the essence of the stochastic behaviour of the
asset, we set the risk-free interest rate equal to 3% and the dividend yield to zero. The results
of the calibration are visualized in Figure 1 and Figure 2 for the NIG–CIR and the BNS model
respectively; the other models give rise to completely similar figures. Here, the circles are the
market prices and the plus signs are the analytical prices (calculated through formula (8) using
the respective characteristic functions and obtained parameters).

In Table 1 one finds the risk-neutral parameters for the different models. For comparative
purposes, one computes several global measures of fit. We consider the root mean square error
(rmse), the average absolute error as a percentage of the mean price (ape), the average absolute
error (aae) and the average relative percentage error (arpe):

rmse =
√√√√ ∑

options

(Market price − Model price)2

number of options

ape = 1

mean option price

∑
options

|Market price − Model price|
number of options

aae =
∑

options

|Market price − Model price|
number of options

arpe = 1

number of options

∑
options

|Market price − Model price|
Market price

In Table 2 an overview of these measures of fit is given.
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Figure 1: Calibration of NIG–CIR model
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Figure 2: Calibration of Barndorff-Nielsen–Shephard model
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TABLE 1: RISK-NEUTRAL PARAMETERS

HEST
σ 2

0 = 0.0654, κ = 0.6067, η = 0.0707, θ = 0.2928, ρ = −0.7571

HESJ
σ 2

0 = 0.0576, κ = 0.4963, η = 0.0650, θ = 0.2286, ρ = −0.9900,µj = 0.1791,

σj = 0.1346, λ = 0.1382

BN–S
ρ = −4.6750, λ = 0.5474, b = 18.6075, a = 0.6069, σ 2

0 = 0.0433

VG–CIR
C = 18.0968,G = 20.0276,M = 26.3971, κ = 1.2145, η = 0.5501,

λ = 1.7913, y0 = 1

VG–OU


C = 6.1610,G = 9.6443,M = 16.0260, λ = 1.6790, a = 0.3484,

b = 0.7664, y0 = 1

NIG–CIR
α = 16.1975, β = −3.1804, δ = 1.0867, κ = 1.2101, η = 0.5507,

λ = 1.7864, y0 = 1

NIG–OU


α = 8.8914, β = −3.1634, δ = 0.6728, λ = 1.7478, a = 0.3442,

b = 0.7628, y0 = 1

TABLE 2: GLOBAL FIT ERROR MEASURES

Model: rmse ape aae arpe

HEST 3.0281 0.0048 2.4264 0.0174
HESJ 2.8101 0.0045 2.2469 0.0126
BN–S 3.5156 0.0056 2.8194 0.0221
VG–CIR 2.3823 0.0038 1.9337 0.0106
VG–OU
 3.4351 0.0056 2.8238 0.0190
NIG–CIR 2.3485 0.0038 1.9194 0.0099
NIG–OU
 3.2737 0.0054 2.7385 0.0175

4 Simulation
In the current section we describe in some detail how the particular processes presented in section 2
can be implemented in practice in a Monte Carlo simulation pricing framework. For this we first
discuss the numerical implementation of the four building block processes which drive them. This
will be followed by an explanation of how one assembles a time-changed Lévy process.



A PERFECT CALIBRATION! NOW WHAT? 291

4.1 NIG Lévy process

To simulate a NIG process, we first describe how to simulate NIG(α, β, δ) random numbers. NIG
random numbers can be obtained by mixing Inverse Gaussian (IG) random numbers and standard
Normal numbers in the following manner. An IG(a, b) random variable X has a characteristic
function given by:

E[exp(iuX)] = exp(−a
√

−2ui + b2 − b)

First simulate IG(1, δ
√

α2 − β2) random numbers ik , for example using the Inverse Gaussian
generator of Michael, Schucany and Haas (Devroye 1986). Then sample a sequence of standard
Normal random variables uk . NIG random numbers nk are then obtained via:

nk = δ2βik + δ
√

ikuk.

Finally the sample paths of an NIG(α, β, δ) process X = {Xt, t ≥ 0} in the time points tn = n�t ,
n = 0, 1, 2, . . . can be generated by using the independent NIG(α, β, δ�t) random numbers nk

as follows:

X0 = 0, Xtk = Xtk−1 + nk, k ≥ 1.

4.2 VG Lévy process

Since a VG process can be viewed as the difference of two independent Gamma processes, the sim-
ulation of a VG process becomes straightforward. A Gamma process with parameters a, b > 0
is a Lévy process with Gamma(a, b) distributed increments, i.e. following a Gamma distribu-
tion with mean a/b and variance a/b2. A VG process X(V G) = {X(V G)

t , t ≥ 0} with parameters
C, G, M > 0 can be decomposed as X

(V G)
t = G

(1)
t − G

(2)
t , where G(1) = {G(1)

t , t ≥ 0} is a Gamma
process with parameters a = C and b = M and G(2) = {G(2)

t , t ≥ 0} is a Gamma process with
parameters a = C and b = G. The generation of Gamma numbers is quite standard. Possible
generators are Johnk’s gamma generator and Berman’s gamma generator (Devroye 1986).

4.3 CIR stochastic clock

The simulation of a CIR process y = {yt , t ≥ 0} is straightforward. Basically, we discretize the
SDE:

dyt = κ(η − yt )dt + λy
1/2
t dWt, y0 ≥ 0,

where Wt is a standard Brownian motion. Using a first-order accurate explicit differencing scheme
in time the sample path of the CIR process y = {yt , t ≥ 0} in the time points t = n�t , n =
0, 1, 2, . . . , is then given by:

ytn = ytn−1 + κ(η − ytn−1)�t + λy
1/2
tn−1

√
�t vn,

where {vn, n = 1, 2, . . . } is a series of independent standard Normally distributed random num-
bers. For other more involved simulation schemes, like the Milstein scheme, resulting in a
higher-order discretization in time, we refer to Jäckel (2002).
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4.4 Gamma–OU stochastic clock

Recall that for the particular choice of a OU–Gamma process the subordinator z = {zt , t ≥ 0} in
equation (3) is given by the compound Poisson process (4).

To simulate a Gamma(a, b)–OU process y = {yt , t ≥ 0} in the time points tn = n�t , n =
0, 1, 2, . . . , we first simulate in the same time points a Poisson process N = {Nt, t ≥ 0} with
intensity parameter aλ. Then (with the convention that an empty sum equals zero)

ytn = (1 − λ�t)ytn−1 +
Ntn∑

k=Ntn−1+1

xk exp(−λ�tũk),

where ũk are a series of independent uniformly distributed random numbers and xk can be obtained
from your preferred uniform random number generator via xk = − log(uk)/b.

4.5 Path generation for time-changed Lévy process

The explanation of the building block processes above allows us next to assemble all the parts of
the time-changed Lévy process simulation puzzle. For this one can proceed through the following
five steps (Schoutens 2003):

(i) simulate the rate of time change process y = {yt , 0 ≤ t ≤ T };
(ii) calculate from (i) the time change Y = {Yt = ∫ t

0 ysds, 0 ≤ t ≤ T };
(iii) simulate the Lévy process X = {Xt , 0 ≤ t ≤ YT };
(iv) calculate the time-changed Lévy process XYt , for 0 ≤ t ≤ T ;

(v) calculate the stock price process using (6). The mean correcting factor is calculated as:

exp((r − q)t)

E[exp(XYt )|y0]
= exp((r − q)t)

ϕ(−iψX(−i); t, 1)
.

5 Pricing of exotic options
As evidenced by the quality of the calibration on a set of European call options in section 3, we can
hardly discriminate between the different processes on the basis of their smile–conform pricing
characteristics. We therefore put the models further to the test by applying them to a range of more
exotic options. These range from digital barriers, one-touch barrier options, lookback options and
finally cliquet options with local as well as global parameters. These first generation exotics with
path-dependent payoffs were selected since they shed more light on the dynamics of the stock
processes. At the same time, the pricings of the cliquet options are highly sensitive to the forward
smile characteristics induced by the models.

5.1 Exotic options

Let us consider contracts of duration T , and denote the maximum and minimum process, resp.,
of a process Y = {Yt , 0 ≤ t ≤ T } as

MY
t = sup{Yu; 0 ≤ u ≤ t} and mY

t = inf{Yu; 0 ≤ u ≤ t}, 0 ≤ t ≤ T .
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5.1.1 Digital barriers We first consider digital barrier options. These options remain worthless
unless the stock price hits some predefined barrier level H > S0, in which case they pay at expiry
a fixed amount D, normalized to 1 in the current settings. Using risk-neutral valuation, assuming
no dividends and a constant interest rate r , the time t = 0 price is therefore given by:

digital = e−rT EQ[1(MS
T ≥ H)],

where the expectation is taken under the risk-neutral measure Q.
Observe that with the current definition of digital barriers their pricing reflects exactly the

chance of hitting the barrier prior to expiry. The behaviour of the stock after the barrier has been
hit does not influence the result, in contrast with the classic barrier options defined below.

5.1.2 One-touch barrier options For one-touch barrier call options, we focus on the following
four types:

• The down-and-out barrier call is worthless unless its minimum remains above some ‘low
barrier’ H , in which case it retains the structure of a European call with strike K . Its
initial price is given by:

DOB = e−rT EQ[(ST − K)+1(mS
T > H)]

• The down-and-in barrier is a normal European call with strike K , if its minimum went
below some ‘low barrier’ H . If this barrier was never reached during the lifetime of the
option, the option remains worthless. Its initial price is given by:

DIB = e−rT EQ[(ST − K)+1(mS
T ≤ H)]

• The up-and-in barrier is worthless unless its maximum crossed some ‘high barrier’ H ,
in which case it obtains the structure of a European call with strike K . Its price is given
by:

UIB = e−rT EQ[(ST − K)+1(MS
T ≥ H)]

• The up-and-out barrier is worthless unless its maximum remains below some ‘high bar-
rier’ H , in which case it retains the structure of a European call with strike K . Its price
is given by:

UOB = e−rT EQ[(ST − K)+1(MS
T < H)]

5.1.3 Lookback options The payoff of a lookback call option corresponds to the difference
between the stock price level at expiry ST and the lowest level it has reached during its lifetime.
The time t = 0 price of a lookback call option is therefore given by:

LC = e−rT EQ[ST − mS
T ].

Clearly, of the three path-dependent options introduced so far, the lookback option depends the
most on the precise path dynamics.
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5.1.4 Cliquet options Finally we also test the proposed models on the pricing of cliquet options.
These still are very popular options in the equity derivatives world that allow the investor to
participate (partially) in the performance of an underlying over a series of consecutive time
periods [ti , ti+1] by ‘clicking in’ the sum of these local performances. The local performances are
measured relative to the stock level Sti attained at the start of each new subperiod, and each of
the local performances is floored and/or capped to establish whatever desirable mix of positive
and/or negative payoff combination. Generally on the final sum an additional global floor (cap) is
applied to guarantee a minimum (maximum) overall payoff. This can all be summarized through
the following payoff formula:

min

(
capglob, max

(
floorglob,

N∑
i=1

min

(
caploc, max

(
floorloc,

Sti − Sti−1

Sti−1

))))

Observe that the local floor and cap parameters effectively border the relevant ‘local’ price
ranges by centering them around the future, and therefore unknown, spot levels Sti . The pricing
will therefore depend in a non-trivial subtle manner on the forward volatility smile dynamics
of the respective models, further complicated by the global parameters of the contract. For an
in-depth account of the related volatility issues we refer to the contribution of Wilmott (2003) in
one of the previous issues.

5.2 Exotic option prices
We price all exotic options through Monte Carlo simulation. We consistently average over
1 000 000 simulated paths. All options have a lifetime of three years. In order to check the
accuracy of our simulation algorithm we simulated option prices for all European calls available
in the calibration set. All algorithms gave a very satisfactory result, with pricing differences with
respect to their analytic calibration values less than 0.5%.

An important issue for the path-dependent lookback, barrier and digital barrier options above
is the frequency at which the stock price is observed for purposes of determining whether the
barrier or its minimum level has been reached. In the numerical calculations below, we have
assumed a discrete number of observations, namely at the close of each trading day. Moreover,
we have assumed that a year consists of 250 trading days.

In Figure 3 we present simulation results with models for the digital barrier call option as a
function of the barrier level (ranging from 1.05S0 to 1.5S0). As mentioned before, aside from
the discounting factor e−rT , the premiums can be interpreted as the chance of hitting the barrier
during the option lifetime. In Figures 4–6, we show prices for all one-touch barrier options (as
a percentage of the spot). The strike K was always taken equal to the spot S0. For reference we
summarize in Table 5 all option prices for the above discussed exotics. One can check that the
barrier results agree well with the identity DIB + DOB = vanilla call = UIB + UOB, suggesting
that the simulation results are well converged. Lookback prices are presented in Table 3.

Consistently over all figures the Heston prices suggest that this model (for the current cali-
bration) results in path dynamics that are more volatile, breaching more frequently the imposed
barriers. The results for the Lévy models with stochastic time change seem to move in pairs,
with the choice of stochastic clock dominating over the details of the Lévy model upon which
the stochastic time change is applied. The first couple, VG–
 and NIG–
 show very similar
results, overall showing the least volatile path dynamics, whereas the VG–CIR and NIG–CIR
prices consistently fall midway in the pack. Finally the OU–
 results without stochastic clock
typically fall between the Heston and the VG–CIR and NIG–CIR prices.
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Figure 3: Digital barrier prices
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Figure 4: DOB prices
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Figure 5: DIB prices
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Figure 6: UOB prices
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Figure 7: UIB prices

TABLE 3: LOOKBACK OPTION PRICES

HEST HESJ BN–S VG–CIR VG–OU
 NIG–CIR NIG–OU


844.51 845.19 771.28 724.80 713.49 730.84 722.34

Besides these qualitative observations it is important to note the magnitude of the observed
differences. Lookback prices vary over about 15%, the one-touch barriers over 200%, whereas
for the digital barriers we found price differences of over 10%. Finally for the cliquet premiums
a variation of over 40% was noted.

For the Cliquet options, the prices are shown in Figures 8–9 for two different combinations.
The numerical values can be found in Tables 6 and 7. These results are in line with the previous
observations.

6 Conclusion
We have looked at different models, all reflecting non-normal returns and stochastic volatility.
Empirical work has generally supported the need for both ingredients.

We have demonstrated the clear ability of all proposed processes to produce a very convincing
fit to a market-conform volatility surface. At the same time we have shown that this calibration
could be achieved in a timely manner using a very fast computational procedure based on FFT.
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TABLE 4: IMPLIED VOLATILITY SURFACE EUROSTOXX 50, OCTOBER 7TH, 2003

Maturity
(year fraction) 0.0361 0.2000 1.1944 2.1916 4.2056 5.1639

Strike

1081.82 0.3804 0.3451 0.3150 0.3137
1212.12 0.3667 0.3350 0.3082 0.3073
1272.73 0.3603 0.3303 0.3050 0.3043
1514.24 0.3348 0.3116 0.2920 0.2921
1555.15 0.3305 0.3084 0.2899 0.2901
1870.30 0.3105 0.2973 0.2840 0.2730 0.2742
1900.00 0.3076 0.2946 0.2817 0.2714 0.2727
2000.00 0.2976 0.2858 0.2739 0.2660 0.2676
2100.00 0.3175 0.2877 0.2775 0.2672 0.2615 0.2634
2178.18 0.3030 0.2800 0.2709 0.2619 0.2580 0.2600
2200.00 0.2990 0.2778 0.2691 0.2604 0.2570 0.2591
2300.00 0.2800 0.2678 0.2608 0.2536 0.2525 0.2548
2400.00 0.2650 0.2580 0.2524 0.2468 0.2480 0.2505
2499.76 0.2472 0.2493 0.2446 0.2400 0.2435 0.2463
2500.00 0.2471 0.2493 0.2446 0.2400 0.2435 0.2463
2600.00 0.2405 0.2381 0.2358 0.2397 0.2426
2800.00 0.2251 0.2273 0.2322 0.2354
2822.73 0.2240 0.2263 0.2313 0.2346
2870.83 0.2213 0.2242 0.2295 0.2328
2900.00 0.2198 0.2230 0.2288 0.2321
3000.00 0.2148 0.2195 0.2263 0.2296
3153.64 0.2113 0.2141 0.2224 0.2258
3200.00 0.2103 0.2125 0.2212 0.2246
3360.00 0.2069 0.2065 0.2172 0.2206
3400.00 0.2060 0.2050 0.2162 0.2196
3600.00 0.1975 0.2112 0.2148
3626.79 0.1972 0.2105 0.2142
3700.00 0.1964 0.2086 0.2124
3800.00 0.1953 0.2059 0.2099
4000.00 0.1931 0.2006 0.2050
4070.00 0.1988 0.2032
4170.81 0.1961 0.2008
4714.83 0.1910 0.1957
4990.91 0.1904 0.1949
5000.00 0.1903 0.1949
5440.18 0.1938

Note that an almost identical calibration means that at the time-points of the maturities of the
calibration data set the marginal distribution is fitted accurately to the risk-neutral distribution
implied by the market. If we have different models leading all to such almost perfect calibrations,
all models have almost the same marginal distributions. It should, however, be clear that even if
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TABLE 5: EXOTIC OPTION PRICES

NIG– VG– VG– NIG–
H/S0 OU
 CIR OU
 HEST HESJ BN–S CIR

Call 509.76 511.80 509.33 509.39 510.89 509.89 512.21

DOB 0.95 300.25 293.28 318.35 173.03 173.85 230.25 284.10
DOB 0.9 396.80 391.17 402.24 280.30 280.79 352.14 387.83
DOB 0.85 451.61 448.10 452.97 359.27 359.05 423.21 446.52
DOB 0.8 481.65 479.83 481.74 415.06 414.65 461.82 479.77
DOB 0.75 497.00 496.95 496.80 453.13 452.76 481.85 496.78
DOB 0.7 504.31 505.24 504.05 477.47 477.37 492.62 505.38
DOB 0.65 507.53 509.10 507.21 492.52 492.76 498.93 509.34
DOB 0.6 508.88 510.75 508.53 501.09 501.74 503.17 511.09
DOB 0.55 509.43 511.40 509.06 505.55 506.46 505.93 511.80
DOB 0.5 509.64 511.67 509.24 507.78 508.91 507.68 512.08

DIB 0.95 209.51 218.51 190.98 336.35 337.04 279.61 228.10
DIB 0.9 112.95 120.62 107.08 229.08 230.09 157.72 124.37
DIB 0.85 58.14 63.69 56.35 150.11 151.83 86.65 65.68
DIB 0.8 28.11 31.96 27.59 94.32 96.24 48.04 32.43
DIB 0.75 12.76 14.84 12.53 56.26 58.13 28.01 15.42
DIB 0.7 5.45 6.55 5.28 31.91 33.51 17.24 6.83
DIB 0.65 2.23 2.70 2.11 16.86 18.12 10.94 2.87
DIB 0.6 0.88 1.04 0.79 8.29 9.14 6.69 1.11
DIB 0.55 0.33 0.39 0.26 3.83 4.42 3.94 0.40
DIB 0.5 0.12 0.13 0.09 1.60 1.98 2.19 0.13

UIB 1.05 509.32 511.52 508.84 509.30 510.78 509.73 511.98
UIB 1.1 506.68 509.80 506.11 508.52 509.90 508.38 510.37
UIB 1.15 500.33 505.21 499.56 505.96 507.08 504.28 505.93
UIB 1.2 489.05 496.50 488.30 500.42 501.04 495.95 497.41
UIB 1.25 472.47 482.84 471.39 490.85 490.73 482.66 483.94
UIB 1.3 450.54 463.62 449.23 476.43 475.30 464.48 465.16
UIB 1.35 423.62 439.32 422.32 456.83 454.79 441.48 441.00
UIB 1.4 393.01 410.46 391.36 432.17 428.96 414.98 412.16
UIB 1.45 359.77 378.05 357.80 403.03 399.24 385.50 380.04
UIB 1.5 325.25 343.46 322.79 370.33 365.57 354.90 345.79

UOB 1.05 0.44 0.27 0.49 0.09 0.10 0.13 0.23
UOB 1.1 3.08 2.00 3.22 0.87 0.98 1.48 1.84
UOB 1.15 9.43 6.59 9.77 3.42 3.80 5.58 6.27
UOB 1.2 20.71 15.29 21.03 8.96 9.85 9.85 14.80
UOB 1.25 37.29 28.95 37.94 18.53 20.15 27.20 28.26
UOB 1.3 59.22 48.17 60.10 32.95 35.58 45.38 47.04
UOB 1.35 86.14 72.47 87.00 52.55 56.10 68.39 71.21
UOB 1.4 116.75 101.33 117.96 77.20 81.93 94.88 100.04
UOB 1.45 149.98 133.74 151.52 106.35 111.65 124.36 132.16
UOB 1.5 184.50 168.33 186.53 139.04 145.31 154.96 166.41
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TABLE 5: (continued )

NIG– VG– VG– NIG–
H/S0 OU
 CIR OU
 HEST HESJ BN–S CIR

DIG 1.05 0.7995 0.8064 0.7909 0.8226 0.8218 0.8173 0.8118
DIG 1.1 0.7201 0.7334 0.7120 0.7487 0.7478 0.7360 0.7380
DIG 1.15 0.6458 0.6628 0.6382 0.6774 0.6762 0.6580 0.6670
DIG 1.2 0.5744 0.5940 0.5678 0.6084 0.6069 0.5836 0.5977
DIG 1.25 0.5062 0.5273 0.5003 0.5427 0.5408 0.5138 0.5308
DIG 1.3 0.4418 0.4630 0.4363 0.4794 0.4770 0.4493 0.4668
DIG 1.35 0.3816 0.4021 0.3767 0.4198 0.4169 0.3893 0.4059
DIG 1.4 0.3264 0.3456 0.3217 0.3640 0.3603 0.3355 0.3490
DIG 1.45 0.2763 0.2940 0.2722 0.3122 0.3087 0.2870 0.2975
DIG 1.5 0.2321 0.2474 0.2280 0.2649 0.2610 0.2446 0.2510
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Figure 8: Cliquet prices: caploc = 0.08, floloc = −0.08, capglo = +∞, N = 3,
t1 = 1, t2 = 2, t3 = 3

at all time-points 0 ≤ t ≤ T marginal distributions among different models coincide, this does not
imply that exotic prices should also be the same. This can be seen from the following discrete-time
example. Let n ≥ 2 and X = {Xi, i = 1, . . . , n} be an iid sequence and let {ui, i = 1, . . . , n} be
a independent sequence which randomly varies between ui = 0 and 1. We propose two discrete



A PERFECT CALIBRATION! NOW WHAT? 301

−0.05 0 0.05 0.1 0.15
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Global floor

O
pt

io
n 

pr
ic

e

Cliquet − Eurostoxx 50 − 07−10−2003

NIG−OUGamma
VG−CIR
VG−OUGamma
HEST
HESJ
BN−S
NIG−CIR

Figure 9: Cliquet prices: floloc = −0.03, caploc = 0.05,
capglo = +∞, T = 3, N = 6, ti = i/2

TABLE 6: CLIQUET PRICES: CAPLOC = 0.08, FLO−LOC = 0.08, CAPGLO = +∞,
FLOGLO ∈ [0, 0.20], N = 3, T1 = 1, T2 = 2, T3 = 3

NIG– NIG– VG– VG–
f loglo CIR OU
 OU
 CIR HESJ HEST BN–S

0.00 0.0785 0.0837 0.0835 0.0785 0.0667 0.0683 0.0696
0.01 0.0817 0.0866 0.0865 0.0817 0.0704 0.0719 0.0731
0.02 0.0850 0.0897 0.0896 0.0850 0.0743 0.0757 0.0767
0.03 0.0885 0.0930 0.0928 0.0885 0.0783 0.0796 0.0805
0.04 0.0922 0.0964 0.0963 0.0921 0.0825 0.0837 0.0845
0.05 0.0960 0.1000 0.0998 0.0960 0.0868 0.0879 0.0887
0.06 0.1000 0.1037 0.1036 0.1000 0.0913 0.0923 0.0930
0.07 0.1042 0.1076 0.1075 0.1042 0.0959 0.0969 0.0976
0.08 0.1086 0.1117 0.1116 0.1085 0.1008 0.1017 0.1024
0.09 0.1144 0.1174 0.1173 0.1144 0.1072 0.1080 0.1085
0.10 0.1203 0.1232 0.1231 0.1203 0.1137 0.1145 0.1149
0.11 0.1264 0.1292 0.1291 0.1264 0.1204 0.1211 0.1214
0.12 0.1327 0.1353 0.1352 0.1327 0.1272 0.1279 0.1280
0.13 0.1391 0.1415 0.1414 0.1391 0.1342 0.1348 0.1348
0.14 0.1456 0.1478 0.1478 0.1456 0.1412 0.1418 0.1418
0.15 0.1523 0.1543 0.1543 0.1523 0.1485 0.1490 0.1489
0.16 0.1591 0.1610 0.1610 0.1591 0.1558 0.1562 0.1561
0.17 0.1661 0.1677 0.1678 0.1661 0.1633 0.1637 0.1635
0.18 0.1732 0.1747 0.1747 0.1733 0.1709 0.1712 0.1711
0.19 0.1805 0.1817 0.1818 0.1806 0.1787 0.1789 0.1788
0.20 0.1880 0.1889 0.1890 0.1880 0.1866 0.1868 0.1867
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TABLE 7: CLIQUET PRICES: FLOLOC = −0.03, CAPLOC = 0.05, CAPGLO = +∞, T = 3,
N = 6, TI = I/2

NIG– NIG– VG– VG–
f loglo CIR OU
 OU
 CIR HESJ HEST BN–S

−0.05 0.0990 0.1092 0.1131 0.1001 0.0724 0.0762 0.0788
−0.04 0.0997 0.1098 0.1137 0.1008 0.0734 0.0771 0.0796
−0.03 0.1005 0.1104 0.1144 0.1017 0.0745 0.0781 0.0805
−0.02 0.1015 0.1112 0.1151 0.1026 0.0757 0.0792 0.0815
−0.01 0.1028 0.1124 0.1162 0.1039 0.0776 0.0811 0.0831

0.00 0.1044 0.1137 0.1175 0.1054 0.0798 0.0831 0.0849
0.01 0.1060 0.1152 0.1189 0.1071 0.0821 0.0853 0.0869
0.02 0.1079 0.1168 0.1204 0.1089 0.0847 0.0877 0.0891
0.03 0.1099 0.1185 0.1221 0.1109 0.0874 0.0904 0.0915
0.04 0.1121 0.1205 0.1240 0.1131 0.0904 0.0932 0.0942
0.05 0.1145 0.1226 0.1260 0.1154 0.0937 0.0963 0.0972
0.06 0.1171 0.1250 0.1283 0.1180 0.0971 0.0996 0.1004
0.07 0.1204 0.1280 0.1311 0.1213 0.1016 0.1039 0.1045
0.08 0.1239 0.1312 0.1342 0.1248 0.1063 0.1084 0.1088
0.09 0.1277 0.1346 0.1375 0.1286 0.1113 0.1132 0.1135
0.10 0.1317 0.1382 0.1410 0.1326 0.1165 0.1183 0.1185
0.11 0.1361 0.1421 0.1448 0.1368 0.1220 0.1237 0.1238
0.12 0.1406 0.1463 0.1488 0.1414 0.1278 0.1293 0.1294
0.13 0.1456 0.1508 0.1531 0.1462 0.1339 0.1352 0.1353
0.14 0.1508 0.1556 0.1576 0.1514 0.1403 0.1414 0.1415
0.15 0.1567 0.1611 0.1630 0.1573 0.1474 0.1484 0.1484

(be it unrealistic) stock price models, S(1) and S(2), with the same marginal distributions:

S
(1)
i = uiX1 + (1 − ui)X2 and S

(2)
i = Xi.

The first process flips randomly between two states X1 and X2, both of which follow the dis-
tribution of the iid sequence, and so do all the marginals at the time-points i = 1, . . . , n. The
second process changes value in all time-points. The values are independent of each other and
all follow again the same distribution of the iid sequence. In both cases all the marginal distri-
butions (at every i = 1, . . . , n) are the same (as the distribution underlying the sequence X).
It is clear, however, that the maximum and minimum of both processes behave completely
differently. For the first process, the maximal maxj≤i S

(1)
i = max(X1, X2) and minimal pro-

cess minj≤i S
(1)
i = min(X1, X2) for i are large enough, whereas for the second process there

is much more variation possible and it clearly leads to other distributions. In summary, it
should be clear that equal marginal distributions of a process do not at all imply equal marginal
distributions of the associated minimal or maximal process. This explains why matching Euro-
pean call prices do not lead necessarily to matching exotic prices. It is the underlying fine-
grain structure of the process that will have an important impact on the path-dependent option
prices.
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We have illustrated this by pricing exotics by Monte Carlo simulation, showing that price
differences of over 200% are no exception. For lookback call options a price range of more
than 15% amongst the models was observed. A similar conclusion was valid for the digital
barrier premiums. Even for cliquet options, which only depend on the stock realizations over a
limited amount of time-points, prices vary substantially among the models. At the same time the
presented details of the Monte Carlo implementation should allow the reader to embark on his/her
own pricing experiments.

The conclusion is that great care should be taken when employing attractive fancy-dancy
models to price (or even more importantly, to evaluate hedge parameters for) exotics. As far as
we know no detailed study about the underlying path structure of assets has been done yet. Our
study motivates such a deeper study.
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Within the general framework of stochastic volatility, the authors propose a method,
which is consistent with no-arbitrage, to price complicated path-dependent derivatives
using only the information contained in the implied volatility skew. This method
exploits the time scale content of volatility to bridge the gap between skews and
derivatives prices. Here they present their pricing formulas in terms of Greeks free
from the details of the underlying models and mathematical techniques.

1 Underlying or smile?
Our goal is to address the following fundamental question in pricing and hedging derivatives. How
traded call options, quoted in terms of implied volatilities, can be used to price and hedge more
complicated contracts. One can approach this difficult problem in two different ways: modeling
the evolution of the underlying or modeling the evolution of the implied volatility surface. In both
cases one requires that the model is free of arbitrage.

Modeling the underlying usually involves the specification of a multi-factor Markovian model
under the risk-neutral pricing measure (see Duffie et al. 2000, for instance). The calibration to
the observed implied volatilities of the parameters of that model, including the market prices of
risk, is a challenging task because of the complex relation between call option prices and model
parameters (through a pricing partial differential equation, for instance). A major problem with this
approach is to find the ‘right model’ which will produce a stable parameter estimation. We like to
think of this problem as the ‘(t, T , K)’ problem: for a given present time t and a fixed maturity T ,
it is usually easy with low dimensional models to fit the skew with respect to strikes K . Getting a
good fit of the term structure of implied volatility, that is when a range of observed maturities are
taken into account, is a much harder problem which can be handled with a sufficient number of
parameters and eventually including jumps in the model (see Duffie et al. 2000, Carr et al. 2000 for
instance). The main problem remains: the stability with respect to t of these calibrated parameters.
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However, this is a highly desirable quality if one wants to use the model to compute no-arbitrage
prices of more complex path-dependent derivatives, since in this case the distribution over time of
the underlying is crucial.

Modeling directly the evolution of the implied volatility surface is a promising approach but
involves some complicated issues. One has to make sure that the model is free of arbitrage or, in
other words, that the surface is produced by some underlying under a risk-neutral measure. This is
not an obvious task (see Cont and da Fonseca 2002 and references therein). The choice of a model
and its calibration is also an important issue in this approach. But most importantly, in order to
use this modeling to price other path-dependent contracts, one has to identify a corresponding
underlying which typically does not lead to a low dimensional Markovian evolution.

Wouldn’t it be nice to have a direct and simple connection between the observed implied
volatilities and prices of more complex path-dependent contracts! Our objective is to pro-
vide such a bridge. This is done by using a combination of singular and regular perturbations
techniques corresponding respectively to fast and slow time scales in volatility. We obtain a
parametrization of the implied volatility surface in terms of Greeks, which involves four para-
meters at the first order of approximation. This procedure leads to parameters which are exactly
those needed to price other contracts at this level of approximation. In our previous work pre-
sented in Fouque et al. (2000) we used only the fast volatility time scale combined with a statistical
estimation of an effective constant volatility from historical data. The introduction of the slow
volatility time scale enables us to capture more accurately the behavior of the term structure of
implied volatility at long maturities. Moreover in the framework presented here, statistics of his-
torical data are not needed. Thus, in summary, we directly link the implied volatilities to prices of
path-dependent contracts by exploiting volatility time scales. We refer to Fouque et al. (2003a) for
a detailed presentation of volatility time scales in the S&P500 index. The mathematical derivation
of the combined regular and singular perturbations can be found in Fouque et al. (2004b).

2 Volatility time scales
Stochastic volatility models can be seen as continuous time versions of ARCH-type models which
have been introduced by R. Engle. The importance of volatility modeling is reflected in the fact
that R. Engle was awarded the 2003 Nobel Prize for Economics, shared with C. Granger whose
work also deals with time scale modeling. Our modeling point of view is that volatility is driven by
several stochastic factors running on different time scales. The presence of these volatility factors
is well documented in the literature using underlying returns data (see for instance Alizadeh
et al. (2002), Anderson and Bollerslev (1997), Chernov et al. (2003), Engle and Patton (2001),
Fouque et al. (2003a), Hillebrand (2003), LeBaron (2001) Melino and Turnbull (1990), Muller
et al. (1997)). In fact these factors play a central role in derivatives pricing and generate in a
complex way the term structure of implied volatility. Our perturbative approach vastly simplifies
this complex relation and leads to simple formulas which reflect the main features of the implied
volatilities that follow from the effects of these various volatility time scales.

Before going into formulas, we describe in simple words what these time scales represent and
their effects on derivatives pricing.

A stochastic volatility factor running on a slow scale means that it takes a long time (compared
with typical maturities) for this factor to change appreciably and decorrelate. In the slow scale
limit this would then become a constant volatility factor frozen at the present level. In this limit,
derivatives prices would be obtained by the usual Black–Scholes pricing theory at this constant
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volatility level. Our regular perturbation analysis gives corrections to this limit which affect long
dated options and therefore are reflected in the behavior of the skew at large maturities. Slow
scales, or small perturbations, have been considered in Fournie et al. (1997), Lee (1999), Sircar
and Papanicolaou (1999).

A stochastic volatility factor running on a fast scale means that it takes a short time (compared
with typical maturities) for this factor to come back to its mean level and decorrelate. In the
fast scale limit this would then also become a constant volatility factor at an effective level σ

determined by the averaged square volatility

σ 2 ≈ 1

T − t

∫ T

t

σ 2(s)ds, (1)

the slow volatility factor being frozen, and where we assume that the fast volatility factor is mean-
reverting with rapid mixing properties. Our singular perturbation analysis gives corrections to this
Black–Scholes limit which affect options over various maturities and therefore are reflected in
the behavior of the skew.

The formulas presented below are obtained by considering that volatility is driven by both
slow and fast scale factors. Our analysis, which combines regular and singular perturbations, leads
to a parametrization of the term structure of implied volatility which is valid over a wide range
of maturities. In that sense, to the leading order, we solve the ‘(T , K) problem’. In fact it turns
out that the calibration of our parameters is stable in time and therefore, to the leading order, we
provide a solution to the full (t, T , K) problem, and we demonstrate that modeling volatility with
at least two factors (a slow and a fast) is consistent with the behavior of derivative markets.

3 Volatility skew formulas
3.1 Vanilla prices
Our asymptotic analysis performed on European vanilla options leads to an explicit formula for the
approximated price when the underlying model has a volatility driven by a slow and a fast factor.
The leading order term, PBS(σ �), is the classical Black–Scholes price of the contract evaluated
at the constant volatility σ � which will be calibrated from the observed implied volatilities in
Section 3.2. The correction is a combination of three terms expressed in terms of the Greeks of
the Black–Scholes price at the volatility level σ �:

P ≈ PBS(σ �) + (T − t)
{
v0V + v1S�(V) + v3S�(S2�)

}
, (2)

where S denotes the present value at time t of the underlying, T denotes the maturity, and the
Greeks are given by

V = ∂PBS

∂σ
(σ �) (Vega)

S�(V) = S
∂2PBS

∂S∂σ
(σ �) (SDelta(Vega))

S�(S2�) = S
∂

∂S

(
S2 ∂2PBS

∂S2

)
(σ �) (SDelta(S2Gamma)).

An extensive discussion of the role of the Greeks can be found in Haug (2003).
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The small parameters (v0, v1, v3) will also be calibrated from the observed implied volatilities
as we will explain in Section 3.2. The terms involving v0 and v1 are price corrections that come
from the effect of the slow factor. The term involving v3 is caused by the fast factor in the volatility
and its leverage effect. We remark that the effective volatility σ � includes a correction that comes
from the market price of fast volatility risk; this volatility level correction could alternatively have
been incorporated as a price correction term proportional to S2Gamma (the apparently missing
v2 term). In that sense σ � is a corrected value of the average volatility σ introduced in (1). The
main advantage of introducing σ � is that it can be estimated from the smile as explained below
in Section 3.2. In contrast, σ can only be estimated from long records of historical returns data.

Observe that for European vanilla options we have the explicit relation:

V = (T − t)σS2�,

and therefore the price approximation can be written in the form

P ≈ PBS(σ �) + (T − t)v0V + {
(T − t)v1 + (v3/σ

�)
}
S�(V). (3)

It is crucial to observe that we can implement this level of price approximation knowing only
the present value, S, and the four parameters σ �, v0, v1 and v3. We next show that these parameters
in fact can be estimated from the implied volatilities.

3.2 Calibrating the smile

The price approximation given above in the case with European call options leads to the following
approximation of the implied volatility skew:

I (t, S; T , K) ≈ b0 + b1(T − t) + {m0 + m1(T − t)} LMMR, (4)

where as in Fouque et al. (2000) the Log-Moneyness-to-Maturity Ratio is defined by

LMMR = log(K/S)

T − t
.

In fact the coefficients m0 and b0 are due to the fast volatility factor while the coefficients m1

and b1 are due to the slow volatility factor which becomes important for large maturities.
Our method now consists of the following steps:
(I) Given a discrete set of implied volatilities I (t, S; Ki, Tj ), we carry out the linear least

squares fits, b + m LMMR, with respect to LMMR for each time to maturity τj = Tj − t on
a given day t .This is illustrated in Figure 1 for six different maturities and for strikes not far
out-of-the-money.

We will see in section 4 that higher order corrections are needed to capture the turn of the
skew as illustrated in Figure 3.

On a given day the above regression gives a pair of estimates of m and b for each maturity
T − t that is available on that day. Next we estimate the parameters (m0, b0), respectively (m1, b1),
by linear regression with respect to (T − t) of m, respectively b.

In Figure 2 we show the results of these linear regressions on a given day (June 5, 2003) for
the S&P500 implied volatilities.
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Figure 1: S&P500 implied volatility data on June 5, 2003 and fits to the affine
LMMR approximation (4) for six different maturities
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Figure 2: S&P500 implied volatility data on June 5, 2003 and fits to the
two-scales asymptotic theory. The bottom (resp. top) figure shows the
linear regression of b (resp. a) with respect to time to maturity τ = T − t
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(II) The parameters σ �, v0, v1 and v3 that are needed for pricing are given explicitly by the
following formulas:

σ � = b0 + m0

(
r − b2

0

2

)

v0 = b1 + m1

(
r − b2

0

2

)
(5)

v1 = m1b
2
0

v3 = m0b
3
0

Observe that in the regime that our approximation is valid the parameters v0, v1 and v3 are
expected to be small, while σ � is the leading order magnitude of volatility. This is what we see
on Figure 2 for S&P500 on June 5, 2003. Here, r is the short rate which we assume to be known
and constant.

3.3 Pricing equations

We explain some of the background for the above results and relate this to deriving pricing
equations for rather general contracts. The price approximation given by the right-hand side of
(3) can be written

PBS(σ �) + P1(σ
�)

where the correction P1(σ
�) is given by:

P1(σ
�) = (T − t)v0V + {

(T − t)v1 + (v3/σ
�t)

}
S�(V).

The leading order term PBS(σ �) is the classical Black–Scholes price at the constant volatility
level σ �. It is the solution of the PDE problem

LBS(σ �)PBS = 0

with the terminal condition PBS(T , S) = h(S) where h is the payoff function for the European
vanilla option that we consider. Recall that the Black–Scholes operator is given by

LBS(σ �) = ∂

∂t
+ 1

2
(σ �)2S2 ∂2

∂S2
+ r

(
S

∂

∂S
− ·

)
.

The price correction P1(σ
�) solves the following partial differential equation

LBS(σ �)P1(σ
�) = −

(
2v0

∂PBS

∂σ
+ 2v1S

∂2PBS

∂S∂σ
+ v3S

∂

∂S

(
S2 ∂2PBS

∂S2

))
(σ �), (6)
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with a zero terminal condition P1(σ
�)(T , S) = 0. In terms of the Greeks introduced in (2) this

equation reads

LBS(σ �)P1(σ
�) = − (

2v0V + 2v1S�(V) + v3S�(S2�)
)

(7)

where again the Greeks are evaluated at the effective volatility σ �.

3.4 Pricing exotic contracts

We are now in a position to carry out our main task, that is, with the parameters calibrated from
the smile we will price more general contracts than just the vanilla cases considered above. The
pricing procedure is simply:

1. Compute the leading order (Black–Scholes) price P0(σ
�) which is the price of the

contract at the constant volatility level σ � defined in (5). This involves solving partial
differential equations with appropriate boundary and terminal conditions.

2. Compute the Greeks V, S�(V), S�(S2�) of the price P0(σ
�) of the exotic contract.

3. Compute the price correction P1(σ
�) by solving the same pricing problem as in Step 1

for P0(σ
�) with the constant volatility σ �, but with a zero payoff and with a source, as

in (7), defined in terms of the computed Greeks and the three parameters v0, v1 and v3

that are calibrated from the skew as explained in Section 3.2.

4. The price is now given by correcting the leading order price:

P ≈ P0(σ
�) + P1(σ

�).

We present next some remarks regarding the above procedure.

• For complicated contracts, computing the price P0(σ
�) along with the Greeks usually

requires numerical methods (finite differences, Monte Carlo, etc.) depending on the nature
of the contract. We do not comment on the details of these numerical methods. These
methods are well documented elsewhere (see for instance Wilmott 2000), what is impor-
tant to note is that in this framework they only need to be applied in a setting with a
constant volatility.

• Solving the problem for the correction P1 requires generalizations of these methods
to the case with a source term. The authors have explicitly considered some of these
problems (Asian, Barriers, American, etc.) in Fouque et al. (2000) with only the fast
scale, in Fouque et al. (2004b) and Fouque et al. (2004c) with both fast and slow scales.
Note that for American options the free boundary is determined by solving the problem
for P0(σ

�) and it is then used as a fixed boundary in the problem with a source that
determines P1(σ

�).

4 Further corrections
Observe that above we used a leading order expansion of the price in the context of a multi-
factor stochastic volatility to obtain a connection between the implied volatility skew and pricing
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formulas. The mathematical tools underlying the approximation (6) consists of writing first a
class of stochastic volatility models containing fast and slow volatility factors. We then expand
the corresponding pricing equations with respect to the small parameters defining these two time
scales: one parameter being the time scale of the fast factor and the other being the reciprocal
of the time scale of the slow factor. The formulas above constitute the first-order approximation
with respect to these parameters.

A natural extension of this approach is to include further terms of the asymptotic expansion.
In particular, as the first-order terms describe affine skews (as a function of log-moneyness),
but often we observe slight turns (or wings) at extreme strikes, we consider the next set of
terms, which turn out to allow for skews that are quartic polynomials in log-moneyness. By
including these terms we improve the quality of the fit to the skew and the accuracy of the
pricing formulas. Indeed the number of parameters increases (from four to eleven), higher order
Greeks are involved (up to sixth-order derivatives) and consequently the computational cost also
increases.

The upshot of a long calculation that includes the next three (second-order) terms in the
combined fast and slow scales expansion, is that, outside of a small terminal layer (very close to
expiration), implied volatilities are approximated by

I ≈
4∑

j=0

aj (τ ) (LM)j + 1

τ
�t , (8)

where τ denotes the time-to-maturity T − t , LM denotes the moneyness log(K/S), and �t is a
rapidly changing component that varies with the fast volatility factor. In (8) we choose to separate
the log-moneyness and the maturity dependence. Alternatively we could have written the implied
volatility as a polynomial in LMMR as we did in (4) for the first-order approximation.

Again, this calibration formula is employed in a two-stage fitting procedure that recog-
nizes the thinness of data in the maturity dimension, relative to the many available strikes. On
each day, the skew for each available maturity is fit to a quartic polynomial in log-moneyness
to obtain estimates of a1(τ ), a2(τ ), a3(τ ) and a4(τ ) for those τ that are observed on that
day. The a0 estimates include the small component �t , and we discuss only the a1, · · · , a4

fits here.
Figure 3 shows some typical quartic fits of S&P500 implied volatilities for a few maturities.

Here we use a wider range of strikes than in the linear fit shown in Figure 1, in particular in the
out-of-the-money direction. We see from these plots that the quartic produced by the second-order
approximation becomes important in capturing the turn of the skew. In these fits, it is important
to fit the main body of the skew to an affine function of log-moneyness first (corresponding to
the first-order approximation presented in section 3.2), and then fit the remainder

I − (a0 + a1(LM))

(LM)2

to a quadratic in moneyness LM (in practice, LM is shifted to LM + 1 to avoid divide-by-zero
issues). This split procedure is necessary because a free one-stage fit often uses the freedom of
the quartic to catch stray data points, leading to large estimates of a3 and a4. By viewing the
wings as small corrections to the linear skew, we avoid ‘tail wagging the dog’ phenomena.
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Figure 3: S&P500 implied volatility data on June 5, 2003 and quartic fits to the
asymptotic theory for four maturities

Then, we fit the quartic coefficients to the following term-structure formulas coming from the
asymptotics:

a1(τ ) =
2∑

k=−1

a1,kτ
k

a2(τ ) =
1∑

k=−2

a2,kτ
k (9)

a3(τ ) =
0∑

k=−1

a3,kτ
k

a4(τ ) =
−1∑

k=−2

a4,kτ
k.

The calibrated parameters {aj,k} play the role played by (b0, b1, m0, m1) in the first-order theory.
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Figure 4 shows the fits of the a(τ)’s to their term-structure formulas for S&P500 data on
June 5, 2003.
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Figure 4: S&P500 term-structure fit using second-order approximation. Data
from June 5, 2003

As discussed in the introduction, one of the main issues in volatility calibration is the stability
with respect to t of the parameter estimates. To illustrate this point we carried out the quartic
fits on S&P500 implied volatilities collected over the course of a month, We obtain estimates
of a1(τ ), a2(τ ), a3(τ ) and a4(τ ) for those τ that are observed over this period. Figure 5 shows
the fits of a1, · · · , a4 to their corresponding term-structure formulas given in (9). The reasonable
fits shown in Figure 5, using a month’s data, demonstrate the stability of the approximation over
some time. We remark that the a1 estimates become less structured at small maturities because
of a periodic maturity cycle component due to the option expiration (‘witching’) dates the third
Friday of each month. This is studied in detail in Fouque et al. (2004a).

The final step is to recover the parameters needed for pricing from the estimates of {aj,k},
the analog of (5) in the first-order theory. However, these relations are no longer linear in the
second-order theory, and a non-linear inversion algorithm is required. This aspect has to be treated
case by case in order to take advantage of the particular features of the market under study. For
instance in FX markets, the correlation between the underlying and its volatility tends to be zero
which reduces the complexity of the implementation of the second-order theory.
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25
Inference and Stochastic
Volatility
Alireza Javaheri*

1 Introduction
Consider a stochastic volatility mode such as the square-root (Lewis Alan 2000) model

dSt/St = µSdt + √
vtdBt

dvt = (ω − θvt )dt + ξ
√

vtdZt

with Brownian motions < dBt , dZt >= ρ as usual.
The Euler log-normal equations corresponding to discrete observations would be

LnSk+1 = LnSk + (µS − 1
2vk)�t + √

vk

√
�tBk

vk+1 = vk + (ω − θvk)�t + ξ
√

vk

√
�tZk

with (Bk) and (Zk) temporally uncorrelated Gaussian random variables with a mutual correla-
tion ρ.

Considering µS known, one could attempt to infer the parameter set � = (ω, θ, ξ, ρ) from a
given time series of N asset prices (Sk)1≤k≤N . This could be accomplished via various methods
such as maximization of likelihood as suggested by Fridman and Harris (1998) and Javaheri et al.
(2003), or via Markov chain Monte Carlo algorithms as done by Kim et al. (1998) and Jacquier
et al. (1994).

Much of the recent financial econometrics literature (Bakshi et al. 1997, Bates 2000) uses these
inference methodologies to estimate the embedded stochastic volatility parameters from the time
series under the statistical measure and then compares them to those obtained from options markets

*Based on a dissertation supervised by Prof. Alain Galli, Ecole des Mines de Paris.
Alireza Javaheri is a Quantitative Analyst at Citigroup in the Fixed Income Derivatives Research area. The opinions
expressed in this article are solely those of the author and do not reflect any views by Citigroup.
Alireza Javaheri would like to thank the participants at the WILMOTT Technical Forum and in particular Vladimir
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under the risk-neutral measure. According to the Girsanov theorem there should be a consistency
between the two measures in that the parameters (ξ ,ρ) should be identical for the two markets.

In practice, however, researchers observe a much higher estimated value for ξ and |ρ| from
the options markets. They then conclude this could mean there is a model misspecification or a
trade opportunity.

The object of this chapter is to see how reliable the estimations from the time series actually
are. Indeed even if the Maximum Likelihood Estimators (MLE) are asymptotically unbiased and
efficient, are we sure that we have enough data-points to make strong inference-based conclusions?

In our following study we use the filtered MLE method as described in Javaheri et al. (2003).

2 The inference tests
2.1 Single parameter estimation
A known weakness of optimization algorithms is the following. The higher the number of param-
eters, the worse the performance of the algorithm. This means that a one-parameter optimization
should perform best. To test this, we simulate 5000 points via the Heston model with a parameter
set �∗ as shown in Table 1 (see also Figure 1).

We use a drift of µS = 0.025 and a time step �t = 1/252 as before.
In order to get the best performance we fix all parameters except one. For instance to obtain

ω̂ we fix θ = 10.0, ξ = 0.03, ρ = −0.50, µS = 0.025, we choose a reasonable initial point ω0

and then optimize upon ω only. We choose an initial parameter-set �0 as shown in Table 2. The
results are displayed in the following tables. See Javaheri et al. (2003) for an explanation on EKF,
EPF, UKF and UPF.

TABLE 1: THE TRUE PARAMETER-SET �∗ USED FOR DATA
SIMULATION

�∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = −0.50

TABLE 2: THE INITIAL PARAMETER-SET �0 USED FOR THE
OPTIMIZATION PROCESS

�0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = −0.50

TABLE 3: THE OPTIMAL PARAMETER-SET �̂. THE
ESTIMATION IS PERFORMED INDIVIDUALLY FOR EACH
PARAMETER ON THE ARTIFICIALLY GENERATED TIME
SERIES. PARTICLE FILTERS USE 1000 SIMULATIONS

Filter ω̂ θ̂ ξ̂ ρ̂

EKF 0.098212 10.188843 0.052324 −0.873571
UKF 0.107281 10.089381 0.000001 +0.598434
EPF 0.098287 10.130531 0.044437 −0.827729
UPF 0.100581 10.221816 0.051902 −0.487695
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Figure 1: Simulated stock-price path via Heston using �∗

It is interesting to note that the estimation of the volatility-drift parameters (ω, θ) could be
done fairly well via EKF. This makes sense since the dependence on these parameters is linear.

The estimation of volatility and correlation parameters (ξ, ρ) is not as straightforward. This
could be seen by plotting the likelihood L(�) as a function of ω, θ , ξ and ρ separately. We fix
three parameters to their optimal values and plot L(�) as a function of the last one. We observe
in Figures 2 to 5 that the likelihood function is fairly easy to optimize for (ω, θ). However, the
function is very flat around the optimal ξ and ρ. Hence the difficulty of finding the optimums!
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Figure 2: f (ω) = L(ω, θ̂, ξ̂ , ρ̂) has a good slope around ω̂ = 0.10
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Figure 5: f (ρ) = L(ω̂, θ̂, ξ̂ , ρ) is flat and irregular around ρ̂ = −0.50

2.2 Sample size

It seems therefore that the estimation is inefficient for the parameter ξ no matter which filter
we use. The issue is that of inefficiency (large error variance) for this given sample size. This
is indeed one of the shortcomings of the Maximum Likelihood Estimators (MLE). For a given
sample size they can very well be inefficient and even have a bias. The choice of the filter will
not solve this issue. However (under minimal regularity conditions) MLEs are consistent and
therefore asymptotically converge to the correct optimum. This means that the sample size is key.

To test this we can choose larger samples of N = 50 000, N = 100 000 and N = 500 000
points and rerun the simplest filter, namely the EKF. As expected the optimum of the likelihood
function becomes closer and closer to ξ∗. This can be seen in Figures 6 to 9 as well as in Table 4.

TABLE 4: THE OPTIMAL EKF
PARAMETERS ξ̂ AND ρ̂ GIVEN A
SAMPLE SIZE N . THE TRUE
PARAMETERS ARE ξ∗ = 0.03 AND
ρ∗ = −0.50. THE INITIAL VALUES
WERE ξ0 = 0.03 AND ρ0 = −0.040

N ξ̂ ρ̂

5000 0.052324 −0.873571
50 000 0.036463 −0.608088

100 000 0.033400 −0.556868
500 000 0.031922 −0.532142
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The same exact observations could be made for the correlation parameter ρ and the results
are displayed in the same Table 4. The likelihood graphs are omitted in the interest of brevity.

As for the drift parameters ω and θ , the convergence was good even for N = 5000 as previously
observed.

Unfortunately in reality we have limited historic data. Even at a daily frequency 50 000 points
would correspond to 200 years!

One possibility would be to use intra-day data; however, that assumes that the behavior of the
stock price is the same intra-day (which is reasonable considering we started with a continuous
SDE). Moreover, clean intra-day data is usually not readily available and needs preprocessing. In
any case, ultra-high frequency data has its known problems such as market micro-structures.

Therefore, having p parameters in the optimal parameter-set �̂N = (
�̂N [j ]

)
1≤j≤p

for a sample
size N , we have for each parameter �[j ]

lim
N→+∞

�̂N [j ] | {
�[k] = �∗[k]; 1 ≤ k ≤ p; k �= j

} = �∗[j ] (1)

What is more this is true for any valid initial value �0[j ], which means the MLE is robust.

2.3 Joint estimation of the parameters
Let us now assume that, as in reality, we do not know any of the parameters, choose an initial set
�0 and test the consistency of the MLE. We shall apply the EKF to the data and take the same
true parameter set �∗ as in the previous section (see Tables 5 and 6). We assume that µS = 0.025
is known, otherwise it could be estimated together with the model parameters. The results are
displayed in the following tables.

As previously mentioned, the likelihood function becomes flat and therefore harder to maximize
under a higher number of parameters. The convergence of the estimator will therefore be slower.

Despite this, we can observe in Table 7 the asymptotic convergence of the estimator even
under the joint estimation of all parameters.

Indeed we have now

lim
N→+∞

�̂N = �∗ (2)

which corresponds to the generalization of (1) in the previous section.

TABLE 5: THE TRUE PARAMETER-SET �∗ USED FOR DATA
GENERATION

�∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = −0.50

TABLE 6: THE INITIAL PARAMETER-SET �0 USED FOR THE
OPTIMIZATION PROCESS

�0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = −0.40
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TABLE 7: THE OPTIMAL EKF PARAMETER-SET �̂ FOR A
GIVEN SAMPLE SIZE N . THE FOUR PARAMETERS ARE
ESTIMATED JOINTLY

N ω̂ θ̂ ξ̂ ρ̂

5000 0.150854 15.294576 0.266175 −0.128835
50 000 0.126387 12.748852 0.020521 −1.000000

100 000 0.136023 13.700906 0.044353 −0.439961
500 000 0.100097 10.030336 0.061688 −0.257305

1 000 000 0.105264 10.548642 0.043818 −0.356234
2 000 000 0.103183 10.334876 0.039767 −0.374677
4 000 000 0.105292 10.538019 0.043288 −0.347562
5 000 000 0.101097 10.118951 0.028588 −0.514346

We ran other filters (UKF, EPF, UPF) on the same data set and observed only marginal
improvement. The results are omitted for brevity. It therefore seems that the fundamental issue is
related to the slow convergence of the MLEs regardless of the filtering method.

2.4 Error size

A related issue is the size of the observation error uk ∝ √
�t which is large compared to the

observation function Hk ∝ �t for daily observations.
This underlines the more fundamental problem for the SV estimation: by definition, volatility

represents the noise of the stock process. Indeed if we had taken the spot price Sk as the observation
and the variance vk as the state, we would have

Sk+1 = Sk + SkµS�t + Sk

√
vk

√
�tBk

we would then have an observation function gradient H = 0 and the system would be
unobservable!

It is precisely because we use a Taylor second-order expansion

ln(1 + x) ≈ x − 1

2
x2

that we obtain access to vk through the observation function. However, the error remains dominant
as the first order of the expansion.1

Harvey et al. (1994) use the approximation �t = o(
√

�t) and take

zk = ln

(
ln2

(
Sk+1

Sk

))
≈ ln(vk) + ln(�t) + ln(B2

k )

Note that under this form EKF would blow up since z−
k = h(vk, 0) = −∞.
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They therefore use the fact that E[ln(B2
k )] = −1.27 and stdev[ln(B2

k )] = π/
√

2 and consider
the Gaussian approximation

ln(B2
k ) ∼ −1.27 + π√

2
N (0, 1)

which may or may not be valid. We call this approximation Harvey–Ruiz–Shephard (HRS) and
apply it to the same case as in the previous paragraphs. As can be seen in Table 8 the approximation
seems to be valid for our example. Note that UKF would not have this issue since we would
work with the real non-linear function z = h(x, u) above. However, we would still deal with logs
of very small quantities which could be numerically unstable.

TABLE 8: THE OPTIMAL EKF PARAMETER-SET �̂ VIA THE
HRS APPROXIMATION FOR A GIVEN SAMPLE SIZE N . THE
FOUR PARAMETERS ARE ESTIMATED JOINTLY

N ω̂ θ̂ ξ̂ ρ̂

5000 0.722746 71.753861 0.044602 −1.000000
50 000 0.234110 23.575193 0.028056 −1.000000

100 000 0.150512 15.186113 0.017748 −1.000000
500 000 0.109738 11.020391 0.027140 −0.531481

Another way of tackling the same equation would be via a particle filter where

zk = ln

(∣∣∣∣ln
(

Sk+1

Sk

)∣∣∣∣
)

≈ 1

2
ln(vk) + 1

2
ln(�t) + ln(|Bk|)

and as stated in Alizadeh et al. (2002) the density of ln(|Bk|) is

f (x) = 2exn(ex)

with n() the normal density.2

Testing the same data set provides Table 9 which does not seem to improve upon the KF.

TABLE 9: THE OPTIMAL PF PARAMETER-SET �̂ FOR A
GIVEN SAMPLE SIZE N . THE FOUR PARAMETERS ARE
ESTIMATED JOINTLY

N ω̂ θ̂ ξ̂ ρ̂

5000 0.147212 14.999999 0.070407 −0.555263
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2.5 High frequency data

Given that the results seem to converge for a large number of data points, one idea would be to use
a higher sampling frequency. Indeed if instead of using daily data we sample every five seconds,
on a ten year range we will have 10 × 252 × 6.5 × 60 × 60 ÷ 5 = 11 793 600 data points which
is very sufficient for our MLEs.

For testing the use of high frequency data, we can generate via Monte Carlo 5 000 000 points
with a �t = 1/252 000 which corresponds to 20 years. We obtain the results in Table 10 below.
Both rows have reasonable results. It is, however, notable that the EKF/HRS method seems to
perform better than the plain EKF.

TABLE 10: THE OPTIMAL PARAMETER-SET �̂ FOR 5 000 000
DATA POINTS. THE SAMPLING IS PERFORMED 1000 TIMES A
DAY AND THEREFORE THE DATA-SET CORRESPONDS TO 5000
BUSINESS DAYS. THE FOUR PARAMETERS ARE ESTIMATED
JOINTLY

ω̂ θ̂ ξ̂ ρ̂

EKF 0.090280 9.019962 0.042984 -0.283236

EKF/HRS 0.092372 9.224421 0.030951 -0.507763

2.6 Sampling distribution

Even if in practice we deal with one historic path, we should determine the distribution of the
optimal parameter-set as follows.

We simulate P = 500 paths of length N = 5000 and estimate for each path j the optimal set
�̂(j). We can then estimate

�̂ = 1

P

P−1∑
j=0

�̂(j)

as well as the variance

V (�̂) = 1

P

P−1∑
j=0

(�̂(j) − �̂)2

This way we will know how the estimator performs on average and how far we could be from
this average. The distribution of the parameter-set around its mean is referred to as the sampling
distribution.

As we can see in Table 11 the average-estimated parameter-set is closer to the true-set than the
one-path-estimated-set we were considering in the previous section. However, the corresponding
standard deviation is quite high and we could very well get poor results as previously seen.
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TABLE 11: MEAN (AND STANDARD DEVIATION) FOR THE ESTIMATION OF EACH
PARAMETER VIA EKF OVER P = 500 PATHS OF LENGTHS N = 5000 AND N = 50 000.
THE TRUE VALUES ARE (ω∗ = 0.10, θ∗ = 10, ξ∗ = 0.03, ρ∗ = −0.50)

ω̂ θ̂ ξ̂ ρ̂

N = 5000 0.11933899 11.92271488 0.056092146 −0.34321724
(0.098995729) (9.673829518) (0.049741887) (0.297433861)

N = 50 000 0.102554592 10.26233092 0.04383931 −0.351998284
(0.027020734) (2.706564396) (0.013004526) (0.074998408)

From Figures 10 to 13 we can see that for this data length N and this sample size P the
parameters ω and θ are determined via EKF in a fairly unbiased way. However, the estimator is
not efficient and has a large standard deviation. As for ξ and ρ we have both bias and inefficiency.

This is not surprising given the results of the previous paragraphs. We obtained good results for
(ω, θ) when estimated alone, and not so good results for (ξ, ρ). Classical filtering and estimation
theories work well when the parameters affect the drift of the observation and not the noise. This
causes a slow convergence issue for all our parameters. But this is doubly true for (ξ, ρ) since
they affect the ‘noise of the noise’.

As previously observed the bias and inefficiency will disappear as N → +∞ as is the case
for any MLE estimator. Indeed the biases and the standard deviations are smaller for N = 50 000
than for N = 5000 as we can see in Table 11.
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Figure 10: Density for ω̂ estimated from 500 paths of length 5000 via EKF.
The true value is ω∗ = 0.10
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Figure 11: Density for θ̂ estimated from 500 paths of length 5000 via EKF. The
true value is θ∗ = 10
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Figure 12: Density for ξ̂ estimated from 500 paths of length 5000 via EKF. The
true value is ξ∗ = 0.03
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Figure 13: Density for ρ̂ estimated from 500 paths of length 5000 via
EKF. The true value is ρ∗ = −0.50

3 Conclusion
As we can see inferring parameters from a time series of a limited length could be very dangerous.
This does not mean that the estimations are always wrong but rather that they could very well be
wrong given the size of our estimation error.

In order to check whether there actually is inconsistency between the assets and the options
market, an interesting test was suggested in Ait-Sahalia et al. (2001). One could use the profits
generated from a skewness trade (buying out-of-the-money calls and selling out-of-the-money
puts) as an empirical and model-free measure of the consistency between the two markets. If there
is no conclusive and clear profit generated, this means that the discrepancy could be artificial and
due to the inaccuracy of the time-series estimators.

FOOTNOTES & REFERENCES

1. Note that this is different from a variance swap where we work with the expected values.
Indeed the approximation is perfectly valid if for the return R = �S/S we write

E[ln(1 + R) − R] ≈ −1
2

v

but again, the approximation breaks if we work for one sample path.
2. It is easy to see that if X is a standard Normal variable, then the CDF of ln(|X|) is

F(x) = P(ln(|X|) ≤ x) = P(|X| ≤ ex) = P(−ex ≤ X ≤ ex)
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therefore

F(x) = N(ex) − N(−ex) = 2N(ex) − 1

and the density is determined by taking the derivative with respect to x as usual.
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26
A Critique of the Crank
Nicolson Scheme
Strengths and
Weaknesses for Financial
Instrument Pricing
Daniel J. Duffy

In this chapter we apply the Finite Difference Method (FDM) to the Black–Scholes
equation. In particular, we analyse the famous Crank Nicolson method that is very
popular in financial engineering. Unfortunately, the method does not always produce
accurate results and it is the objective of this chapter to enumerate the problems and
then to propose more robust finite difference schemes. More detailed accounts of the
current problem can be found in Duffy (2001, 2004).

1 A short history of Crank Nicolson in financial
engineering
The Crank Nicolson finite difference scheme was invented by John Crank and Phyllis Nicolson.
They originally applied it to the heat equation and they approximated the solution of the heat
equation on some finite grid by approximating the derivatives in space x and time t by finite dif-
ferences. Much earlier, Richardson devised a finite difference scheme that was easy to compute
but was numerically unstable and thus useless. The instability was not recognized until Crank,
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Nicolson and others carried out lengthy numerical calculations. In short, the Crank Nicolson
method is numerically stable and it only requires the solution of a very simple system of linear
equations (namely, a tridiagonal system) at every time level.

The Crank Nicolson method has become one of the most popular finite difference schemes
for approximating the solution of the Black–Scholes equation and its generalizations (see, for
example, Tavella 2000, Bhansali 1998). The method is essentially a second-order approxi-
mation to the time derivative that appears in the Black–Scholes equation and this property,
plus the fact that the method is stable and is easy to program, makes it very appealing in
practical applications. Numerous articles and publications in the financial engineering litera-
ture use Crank Nicolson as the de-facto scheme for time discretization. Unfortunately, the
method breaks down in certain situations and there are better and more robust alternatives
that have been documented in the numerical analysis and computational fluid dynamics liter-
ature. To this end, we wish to discuss the shortcomings of the method and how they can be
resolved.

2 What is Crank Nicolson, really?
The one-factor Black–Scholes equation for a derivative quantity V depending on an underlying
S is given by

−∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1)

In general, this equation must be augmented by other boundary and initial conditions in order
to ensure a unique solution. In some cases it may be possible to come up with a exact solution to
this problem but in the most general cases we must resort to some kind of approximate method.
In this chapter we discuss the Finite Difference Method and it is based on the tactic of replacing
the continuous derivatives in (1) by divided differences defined on a discrete mesh (see Richtmyer
1967).

In order to motivate the Crank Nicolson scheme let us first consider the following fully implicit
scheme that we define by replacing derivatives with respect to S by three-point divided differences
and the derivative with respect to t by one-sided differences. The scheme is given by

−V n+1
j − V n

j

k
+ rj�S

(
V n+1

j+1 − V n+1
j−1

2�S

)

+1

2
σ 2j2�S2

(
V n+1

j+1 − 2V n+1
j + V n+1

j−1

�S2

)
(2)

= rV n+1
j .

In general, the values of V at time level n are known and the values at time level n + 1 need to
be calculated. Rewriting (2) gives the new form
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


an+1
j V n+1

j−1 + bn+1
j V n+1

j + cn+1
j V n+1

j+1 = Fn+1
j

where

an+1
j =

(
1

2
σ 2j2k − krj

2

)

bn+1
j = − (

1 + σ 2j2k + r
)

cn+1
j =

(
1

2
σ 2j2k + krj

2

)

Fn+1
j = − V n

j .

(3)

This is a tridiagonal scheme that we solve at each time level using standard matrix solvers, for
example LU decomposition (see Isaacson 1966, Duffy 2004). The fully implicit scheme has a
number of desirable features. First, it is stable and there is no restriction on the relative sizes of
the time mesh size k and the space mesh size �S. Furthermore, no spurious oscillations are to
be seen in the solution or its � (as is the case with some other methods). A disadvantage is that
it is only first-order accurate in k. On the other hand, this can be rectified by using extrapolation
and this results in a second-order scheme.

Crank Nicolson is a variation of (2) but in this case we take averages of V at levels n and
n + 1 when approximating the derivative with respect to t . We define the quantity

V
n+ 1

2
j ≡ 1

2

(
V n+1

j + V n
j

)
. (4)

Then the Crank Nicolson method is defined as follows:

−V n+1
j − V n

j

k
+ rj�S


V

n+ 1
2

j+1 − V
n+ 1

2
j−1

2�S




+1

2
σ 2j2�S2


V

n+ 1
2

j+1 − 2V
n+ 1

2
j + V

n+ 1
2

j−1

�S2


 (5)

= τV
n+ 1

2
j .

Again, this is a system that can be posed in the form (3) and hence can be solved by standard
matrix solver techniques at each time level.

The Crank Nicolson method has gained wide acceptance in the financial literature and it seems
to be the de-facto finite difference scheme for one-factor and two-factor Black–Scholes equations.
It has second-order accuracy in the parameter k and is stable. Unfortunately, it has been known
for some considerable time (Il’in 1969) that centred differencing schemes in space combined
with averaging in time (what essentially CN is in this context) lead to spurious oscillations in the
approximate solution. These oscillations have nothing to do with the physical or financial problem
that the scheme is approximating.
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3 The problems with Crank Nicolson: the details
We now give a detailed discussion of Crank Nicolson and when it breaks down or fails to live
up to its perceived expectations.

3.1 A critique of Crank Nicolson

The Crank Nicolson method has become a very popular finite difference scheme for approximating
the Black–Scholes equation.

This equation is an example of a convection–diffusion equation and it has been known for
some time that centred-difference schemes are inappropriate for approximating it (Il’in 1969,
Duffy 1980). In fact, many independent discoveries of novel methods have been made in order to
solve difficult convection–diffusion problems in fluid dynamics, atmospheric pollution modelling,
semiconductor equations, the Fokker–Planck equation and groundwater transport (Morton 1996).

The main problem is that traditional finite difference schemes start to oscillate when the
coefficient of the second derivative (the diffusion term) is very small or when the coefficient of
the first derivative (the convection term) is large (or both). In this case, the mesh size h in the
space direction must be smaller than a certain critical value if we wish to avoid these oscillations.
This problem has been known since the 1950s (see de Allen 1955).

We now discuss Crank Nicolson from a number of viewpoints. For convenience and generality
reasons, we cast the Black–Scholes equation as a generic parabolic initial boundary value problem
in the domain D = (A, B)X(0, T ) where A < B:

Lu ≡ −∂u

∂t
+ σ(x, t)

∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u = f (x, t) in D

u(x, 0) = ϕ(x), x ∈ (A, B) (6)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T ).

In this case the time variable t corresponds to increasing time while the space variable x

corresponds to the underlying asset price S. We specify Dirichlet boundary conditions on a
finite space interval and this is a common situation for several kinds of exotic options, for
example barrier options. Actually, the system (6) is more general than the original Black–Scholes
equation.

3.2 How are derivatives approximated?

There are two kinds of independent variables associated with the one-factor Black–Scholes
as can be seen in (6). These correspond to the x and t variables. We concentrate on the x

direction for the moment. We discretize in this direction using centred differences at the point
(jh, nk):




∂2u

∂x2
∼ un

j+1 − 2un
j + un

j−1

h2

∂u

∂x
∼ un

j+1 − un
j−1

2h
.
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Using this knowledge we can apply the Crank Nicolson method to (6), namely:




−un+1
j − un

j

k
+ σ

n+ 1
2

j

u
n+ 1

2
j+1 − 2u

n+ 1
2

j + u
n+ 1

2
j−1

h2

+µ
n+ 1

2
j

u
n+ 1

2
j+1 − u

n+ 1
2

j−1

2h

+b
n+ 1

2
j u

n+ 1
2

j = f
n+ 1

2
j .

(7)

A bit of simple arithmetic allows us to rewrite (7) in the standard form:

{
an

j un+1
j−1 + bn

j u
n+1
j + cn

j u
n+1
j+1 = Fn

j

F n
j known quantity.

(8)

Of course, this system of equations can be posed in the form of a matrix system. A number of
researchers have examined such systems in conjunction with convection–diffusion equations (for
example, Farrell 2000, Morton 1996). A critical observation is that if the coefficient an

j is not
positive then the resulting solution will show oscillatory behaviour at best or produce non-physical
solutions at worst.

This will give problems in general for Black–Scholes applications where the volatility is a
decaying function of time (see van Deventer 1997), for example:

σ(t) = σ0e
−α(T −t)

where σ0 and α are given constants.

We speak of a singular perturbation problem associated with problem (6) when the coefficient of
the second derivative is small (see Duffy 1980). In this case traditional finite difference schemes
perform badly at the boundary layer situated at x = 0. In fact, if we formally set volatility to
zero in equation (7) we get a so-called weakly stable difference scheme (see Peaceman 1977) that
approximates the first-order hyperbolic equation

−∂u

∂t
+ µ

∂u

∂x
+ bu = f.

This has the consequence that the initial errors in the scheme are not dissipated and hence we
can expect oscillations especially in the presence of rounding errors. We need other one-sided
schemes in this degenerate case (Peaceman 1977, Duffy 1977).

3.3 Boundary conditions

In general, we distinguish three kinds of boundary conditions:

• Dirichlet (as seen in the system (6))

• Neumann conditions

• Robin conditions
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The last two boundary conditions involve the first derivative of the unknown u at the bound-
aries. We must then decide on how we are going to approximate this derivative. We can choose
between first-order accurate one-sided schemes and ghost points (Thomas 1998) that produce
a second-order approximation to the first derivative. We must thus be aware of the fact that
the low-order accuracy at the boundary will adversely impact the second-order accuracy in the
interior of the region of interest. To complicate matters, some models have a boundary condi-
tion involving the second derivative of u or even a ‘linearity’ boundary condition (see Tavella
2000).

Finally, the boundary conditions may be discontinuous. We may resort to non-uniform meshes
to accommodate the discontinuities. This strategy will also destroy the second-order accuracy
of the Crank Nicolson method. The conclusion is that the wrong discrete boundary conditions
adversely affect the accuracy of the finite difference scheme.

3.4 Initial conditions

It is well known that discontinuous initial conditions adversely impact the accuracy of finite
difference schemes (see Smith 1978). In particular, the solution of the difference schemes exhibits
oscillations just after t = 0 but the solution becomes more smooth as time goes on. This has
consequences for options pricing applications because in general the initial condition (this is in
fact a payoff function) is not always smooth. For example, the payoff function for a European
call option is:

C = max (S − K, 0)

where K is the strike price and S is the stock price. Its derivative is given by the jump function:

∂C

∂S
=

{
0, S ≤ K

1, S > K.

This derivative is discontinuous and in general we can expect to get bad accuracy at the points
of discontinuity (in this case, at the strike price where at-the-money issues play an important role).
It is possible to determine mathematically what the accuracy is in some special cases (Smith 1978)
but numerical experiments show us that things are going wrong as well. Of course, if the option
price is badly approximated there is not much hope of getting good approximations to the delta
and gamma. This statement is borne out in practice. Another source of annoyance is that the
boundary and initial conditions may not be compatible with each other. By compatibility, we
mean that the solution is smooth at the corners (A, 0) and (B, 0) of the region of interest and we
thus demand that the solution is the same irrespective of the direction from which we approach
the corners. If we assume that u(x, t) is continuous as we approach the boundaries, then we must
satisfy the compatibility conditions :

{
ϕ(A) ≡ u(A, 0) = g0(0)

ϕ(B) ≡ u(B, 0) = g1(0).

Failure to take these conditions into account in a finite difference scheme will lead to inaccu-
racies at the corner points of the region of interest. On the upside, the discontinuities are quickly
damped out.
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3.5 Proving stability

Much of the literature uses the von Neumann theory to prove stability of finite difference schemes
(Tavella 2000). This theory was developed by John von Neumann, a Hungarian–American math-
ematician, the father of the modern computer and probably one of the greatest brains of the
twentieth century. Strictly speaking, the von Neumann approach is only valid for constant coeffi-
cient, linear initial value problems. The Black–Scholes equation does not fall under this category.
Furthermore, much work has been done in the engineering field to prove stability in other ways, for
example using the maximum principle and matrix theory (Morton 1996, Duffy 1980). A discus-
sion of von Neumann stability for the constant coefficient, linear convection–diffusion equation
can be found in Thomas (1998).

4 An introduction to exponentially fitted finite
difference schemes
4.1 A new class of robust difference schemes

Exponentially fitted schemes are stable, have good convergence properties and do not produce
spurious oscillations. In order to motivate what an exponentially fitted difference scheme is, let
us look at the simple boundary value problem:

σ
d2u

dx2
+ µ

du

dx
= 0 in (A, B)

(9)
u(A) = β0, u(B) = β1.

Here we assume that σ and µ are positive constants. We now approximate (9) by the difference
scheme defined as follows:

σρD+D−Uj + µD0Uj = 0, j = 1, . . . , J − 1

(10)
U0 = β0, UJ = β1

where ρ is a so-called fitting factor (this factor is identically equal to 1 in the case of the centred
difference scheme). We now choose ρ so that the solutions of (9) and (10) are identical at the
mesh-points. Some easy arithmetic shows that

ρ = µh

2σ
coth

µh

2σ

where coth x is the hyperbolic cotangent function defined by

coth x = ex + e−x

ex − e−x
= e2x + 1

e2x − 1
.

The fitting factor ρ will be used when developing fitted difference schemes for variable coefficient
problems. In particular, we discuss the following problem:
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σ(x)
d2u

dx2
+ µ(x)

du

dx
+ b(x)u = f (x)

(11)

u(A) = β0, u(B) = β1

where σ, µ and b are given continuous functions, and

σ(x) ≥ 0, µ(x) ≥ α > 0, b(x) ≤ 0 for x ∈ (A, B).

The fitted difference scheme that approximates (11) is defined by:

ρh
j D+D−Uj + µjD0Uj + bjUj = fj , j = 1, . . . , J − 1

(12)

U0 = β0, UJ = β1

where

ρh
j = µjh

2
coth

µjh

2σj (13)

σj = σ(xj ), µj = µ(xj ), bj = b(xj ), fj = f (xj )

We now state the following fundamental results (see Il’in 1969, Duffy 1980).
The solution of scheme (12) is uniformly stable, that is

|Uj | ≤ |β0| + |β1| + 1

α
maxk=1,...,J |fk|, j = 1, . . . , J − 1

Furthermore, scheme (12) is monotone in the sense that the matrix representation of (12)

AU = F

where U = t (U1, . . . , UJ−1), F = t (f1, . . . , fJ−1) and

A =




. . .
. . . 0

. . . aj,j+1
. . . aj,j

. . .

aj,j−1
. . .

0
. . .

. . .




(14)

aj,j−1 = ρh
j

h2
− µj

2h
> 0 always

aj,j = −2ρh
j

h2
+ bj < 0 always

aj,j+1 = ρjh

h2
+ µj

2h
> 0 always

produces positive solutions from positive input.
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Sufficient conditions for a difference scheme to be monotone have been investigated by many
authors in the last 30 years; we mention the work of Samarski (1976) and Stoyan (1979).

Stoyan also produced stable and convergent difference schemes for the convection–diffusion
equation producing results and conclusions that are similar to the author’s work (see Duffy 1980).

Let u and U be the solutions of (11) and (12), respectively. Then

|u(xj ) − Uj | ≤ Mh

where M is a positive constant that is independent of h and σ (Il’in 1969).
The conclusion is that the fitted scheme (12) is stable, convergent and produces no oscillations.

In particular, the scheme ‘degrades gracefully’ to a well-known stable scheme when σ tends to
zero.

5 Exponentially fitted schemes for the
Black–Scholes equation
We discretize the rectangle [A, B] × [0, T ] as follows:

A = x0 < x1 < . . . < xJ = B (h = xj − xj−1), h constant

0 = t0 < t1 < . . . < tN = T (k = T /N), k constant.

Consider again the operator L in equation (6) defined by

Lu ≡ −∂u

∂t
+ σ(x, t)

∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u.

We replace the derivatives in this operator by their corresponding divided differences and we
define the fitted operator Lh

k by

Lh
kU

n
j ≡ −Un+1

j − Un
j

k
+ ρn+1

j D+D−Un+1
j + µn+1

j D0U
n+1
j + bn+1

j Un+1
j . (15)

Here we use the notation

ϕn+1
j = ϕ(xj , tn+1) in general

and

ρn+1
j ≡ µn+1

j h

2
coth

µn+1
j h

2σn+1
j

.

We now formulate the fully discrete scheme that approximates the initial boundary value
problem (6).

Find a discrete function {Un
j } such that

Lh
kU

n
j = f n+1

j , j = 1, . . . , J − 1, n = 0, . . . , N − 1
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Un
0 = g0(tn), Un

J = g1(tn), n = 0, . . . , N (16)

U0
j = ϕ(xj ), j = 1, . . . , J − 1.

This is a two-level implicit scheme. We wish to prove that scheme (16) is stable and is con-
sistent with the initial boundary value problem (6). We prove stability of (16) by the so-called
discrete maximum principle instead of the von Neumann stability analysis. The von Neumann
approach is well known but the discrete maximum principle is more general and easier to under-
stand and apply in practice. It is also the de-facto standard technique for proving stability of finite
difference and finite element schemes (see Morton 1996, Farrell 2000).

Lemma 1 Let the discrete function wn
j satisfy Lh

kw
n
j ≤ 0 in the interior of the mesh with wn

j ≥ 0
on the boundary 	.
Then wn

j ≥ 0, ∀j = 0, . . . , J ; n = 0, . . . , N .

Proof We transform the inequality Lh
kw

n
j ≤ 0 into an equivalent vector inequality. To this

end, define the vector Wn = t (wn
1 , . . . , wn

J−1). Then the inequality Lh
kw

n
j ≤ 0 is equivalent to the

vector inequality

AnWn+1 ≥ Wn (17)

where

An =




. . .
. . . 0

. . . tnj
. . . sn

j

. . .

rn
j

. . .

0
. . .

. . .




rn
j =

(
− ρn

j

h2
+ µn

j

2h

)
k

sn
j =

(2ρn
j

h2
− bn

j + k−1
)
k

tnj =
(

−
(ρn

j

h2
+ µn

j

2h

))
k.

It is easy to show that the matrix An has non-positive off-diagonal elements, has strictly positive
diagonal elements and is irreducibly diagonally dominant. Hence (see Varga 1962, pages 84–85)
An is non-singular and its inverse is positive:

(An)−1 ≥ 0

Using this result in (17) gives the desired result.
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Lemma 2 Let {Un
j } be the solution of scheme (16) and suppose that

max|Un
j | ≤ m on 	 f or all j and n

max|f n
j | ≤ N in D f or all j and n

Then

maxj |Un
j | ≤ −N

β
+ m in D

Proof Define the discrete barrier function

wn
j = −N

β
+ m ± Un

j

Then wn
j ≥ 0 on 	. Furthermore,

Lh
kw

n
j ≤ 0

Hence wn
j ≥ 0 in Q which proves the result.

Let u(x, t) and {Un
j } be the solutions of (6) and (16), respectively.

Then

|u(xj , tn) − Un
j | ≤ M(h + k) (18)

where M is a constant that is independent of h, k and σ .
This result shows that convergence is assured regardless of the size of σ . No classical scheme

(for example, centred differencing in x and Crank Nicolson in time) has error bounds of the form
(18) where M is independent of h, k and σ .

Summarizing, the advantages of the fitted scheme are:

• It is uniformly stable for all values of h, k and σ .

• It is oscillation-free. Its solution converges to the exact solution of (6). In particular, it
is a powerful scheme for the Black–Scholes equation and its generalizations.

• It is easily programmed, especially if we use object-oriented design and implementation
techniques.

6 Problems with small volatility
We now examine some ‘extreme’ cases in system (16). In particular, we examine the cases

(pure convection/drift) σ → 0
(pure diffusion/volatility) µ → 0
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We shall see that the ‘limiting’ difference schemes are well-known schemes and this is reassuring.
To examine the first extreme case we must know what the limiting properties of the hyperbolic
cotangent function are:

lim
σ→0

ρn
j = lim

σ→0

µn
jh

2
coth

µn
jh

2σn
j

.

We use the formula

lim
σ→0

µh

2
coth

µh

2σ
=




+µh

2
if µ > 0

−µh

2
if µ < 0.

Inserting this result into the first equation in (16) gives us the first-order scheme

µ > 0, −Un+1
j − Un

j

k
+ µn+1

j

(Un+1
j+1 − Un+1

j )

h
+ bn+1

j Un+1
j = f n+1

j

µ < 0, −Un+1
j − Un

j

k
+ µn+1

j

(Un+1
j − Un+1

j−1 )

h
+ bn+1

j Un+1
j = f n+1

j .

These are so-called implicit upwind schemes and are stable and convergent (Duffy 1977, Dautray
1993). We thus conclude that the fitted scheme degrades to an acceptable scheme in the limit.
The case µ → 0 uses the formula

lim
x→0

x coth x = 1.

Then the first equation in system (16) reduces to the equation

−Un+1
j − Un

j

k
+ σn+1

j D+D−Un+1
j + bn+1

j Un+1
j = f n+1

j .

This is a standard approximation to pure diffusion problems and such schemes can be found in
standard numerical analysis textbooks.

These limiting cases reassure us that the fitted method behaves well for ‘extreme’ parameter
values.

7 Exponential fitting and exotic options
We have applied the method to a range of plain and exotic European and American type options.
In particular, we have applied it to various kinds of barrier options (see Topper 1998, Haug 1998),
for example:

• Double barrier call options

• Single barrier call options

• Equations with time-dependent volatilities (for example, a linear function of time)
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• Asymmetric plain vanilla power call options

• Asymmetric capped power call options

We have compared our results with those in Haug (1998) and Topper (1998) and they compare
favourably (Mirani 2002). The main difference between these types lies in the specific payoff
functions (initial conditions) and boundary conditions. Since we are working with a specific kind
of parabolic problem these functions must be specified by us. For example, for a double barrier
option we must give the value of the option at these barriers while for a single barrier option we
define the ‘down’ barrier at S = 0. Summarizing, the exponentially fitted finite difference scheme
gives good approximations to the option price and delta of the above exotic option types. We
have compared the results with Monte Carlo, Haug (1998) and Topper (1998).

8 Uniform approximation of the Greeks
It is well known by now that CN produces bad approximation to option delta and gamma (see,
for example, Zvan 1997, Cooney 1999). Thus, we need to devise schemes that do give uniform
approximation to option sensitivities, especially in the vicinity of the strike price K . The expo-
nentially fitted scheme (16) is a good candidate and more information can be found in Duffy
(2001) and Cooney (1999).

8.1 Is there more hope? The Keller scheme
In this section, however, we give a short overview of the box scheme (Keller 1971) that resolves
many of the problems associated with Crank Nicolson. In short, we reduce the second-order
Black–Scholes equation to a system of first-order equations containing at most first-order deriva-
tives. We then approximate the first derivatives in x and t by averaging in a box. We motivate
the box scheme by examining the generic parabolic initial boundary value problem in the space
interval (0, 1):

∂u

∂t
= ∂

∂x

(
a

∂u

∂x

)
+ cu + S, 0 < x < 1, t > 0

u(x, 0) = g(x), 0 < x < 1

α0u(0, t) + α1a(0, t)ux(0, t) = g0(t)

β0u(1, t) + β1a(1, t)ux(1, t) = g1(t).

(19)

Here u is the (unknown) solution to the problem that satisfies the self-adjoint equation in (19)
and it must also satisfy the initial and boundary conditions (note the latter contain derivatives of
the unknown at the boundaries of the interval). In general, the coefficients in (19) are functions
of both x and t .

We now transform (19) to a first-order system by defining a new variable v. The new trans-
formed set of equations is given by:

a
∂u

∂x
= v

∂v

∂x
= ∂u

∂t
− cu − S
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u(x, 0) = g(x) (20)

α0u(0, t) + α1v(0, t) = g0(t)

β0u(1, t) + β1v(1, t) = g1(t).

We now see that we have to deal with a first-order system of equations with no derivatives on
the boundaries!

We now need to introduce some notation. First, we define average values for x and t coordinates
as follows:

xj±1/2 = 1

2
(xj + xj±1)

tn±1/2 = 1

2
(tn + tn±1)

and for general nets (in principle the approximations to u and v) by

φn
j±1/2 = 1

2
(φn

j + φn
j±1)

φ
n±1/2
j = 1

2
(φn

j + φn±1
j ).

Finally, we define notation for divided differences in the x and t directions as follows:

D−
x φn

j = h−1
j (φn

j − φn
j−1)

D−
t φn

j = k−1
n (φn

j − φn−1
j ).

We are now ready for the new scheme. To this end, we use one-sided difference schemes in both
directions while taking averages and we thus solve for both u and v simultaneously at each time
level:

an
j−1/2 D−

x un
j = vn

j−1/2

D−
x v

n−1/2
j = D−

t un
j−1/2 − c

n−1/2
j−1/2u

n−1/2
j−1/2 − S

n−1/2
j−1/2 (21)

1 ≤ j ≤ J, 1 ≤ n ≤ N.

The corresponding boundary and initial conditions are:

α0u
n
0 + α1v

n
0 = gn

0

β0u
n
J + β1v

n
J = gn

1

}
1 ≤ n ≤ N. (22)

The box scheme has a number of very desirable properties, namely: (a) It is simple, efficient and
easy to program, (b) It is unconditionally stable, (c) It approximates u and its partial derivative in x
with second-order accuracy. For the Black–Scholes equation this means that we can approximate
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both option price and the option delta without trace of spurious oscillation as is experienced with
Crank Nicolson, (d) Richardson extrapolation is applicable and yields two orders of accuracy
improvement per extrapolation (with non-uniform nets!), (e) It supports data, coefficients and
solutions that are only piecewise smooth. In a financial setting it is able to model piecewise
smooth payoff functions. We then define the approximate initial condition as follows:

v0
j− 1

2
= a0

j− 1
2

dg
(
xj−1/2

)
dx

, 1 ≤ j ≤ J.
(23)

For piecewise smooth boundary conditions we use the following tactic:

α0u
n− 1

2
0 + α1v

n− 1
2

0 = g
n− 1

2
0

β0u
n− 1

2
J + β1v

n− 1
2

J = g
n− 1

2
1

1 ≤ n ≤ N

Discontinuities at t = tn!

(24)

Of course we are assuming that the mesh points are sitting on the discontinuities!

9 Conclusions
We have discussed the popular Crank Nicolson method from a number of viewpoints. In particular,
we have made an inventory of the situations where it breaks down or where it deviates from our
expectations:

• The standard von Neumann stability analysis fails to predict the infamous spurious oscil-
lation problem. Hedging applications that use CN will run the risk of inaccuracy at values
in the payoff function where this function is not smooth (for example, the strike price).

• Second-order accuracy is lost when using non-uniform meshes. Sometimes uniform
meshes are not sufficient to approximate the exact solution in a boundary layer (small
volatility) or with nasty payoff functions (for example, binary options or barrier options
with discrete and intermittent barriers). A good discussion of how Crank Nicolson breaks
down for barrier options is given in Tavella (2000).

• There are finite difference schemes that are just as good as, or even better than,
Crank Nicolson, for example fully implicit schemes with extrapolation or Runge–Kutta
(Crouzeix 1975).

• For two-factor and multi-factor problems, we use predictor–corrector, Alternating Direc-
tion Implicit (ADI) and Operator Splitting methods (see Peaceman 1977, Janenko 1971,
Sun 1999). In these cases we see that Crank Nicolson is just one possibility for time
discretization.

A modest proposal would be to investigate robust and effective alternatives to the Crank
Nicolson schemes. This will hopefully improve the FDM gene pool as it were.
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Finite Elements and
Streamline Diffusion for
the Pricing of Structured
Financial Instruments
Andreas Binder and Andrea Schatz

The numerical treatment of partial differential equations in computational finance
started with binomial and trinomial trees, with all the drawbacks related to these
approaches. In the meanwhile (see, e.g., Duffy 2004, in the July issue of Wilmott),
finite differences are widely used in modern derivatives pricing. We present how
pricing software can be developed on the basis of finite element techniques, which
allow more flexibility than finite differences.

Mean reverting models for interest rates tend to become numerically difficult in
regions sufficiently far away from the mean-reverting level. The reason is that the
convection dominates the diffusion in these regions, and therefore techniques for
convection-dominated flows should be applied. We present how streamline diffusion
is applied to obtain stable numerical schemes.

We implemented these approaches in a strictly object-oriented software frame-
work. Some software engineering aspects are also highlighted.

Introduction
We consider models for financial instruments which can, after some manipulation, be written in
the form of parabolic partial differential equations backwards in time. The manipulation typi-
cally requires some Itô calculus, the creation of a risk-free portfolio and self-financing hedging
strategies and some assumptions (like zero transaction costs), which are certainly wrong but a

E-mail: binder@mathconsult.co.at, schatz@mathconsult.co.at
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good starting point. LIBOR market models typically do not fall into this category, but short rate
models do.

For example, let us start with a two-factor Hull–White interest rate model (see Hull and White
1994)

dr = [θ(t) + u(t) − a(t)r(t)]dt + σ1(t)dX1

du = −b(t)u(t)dt + σ2(t)dX2.

The first factor r denotes the spot rate, the second factor u some kind of long-term development
of the interest rates. a is the mean reversion speed of the spot rate r , (θ + u)/a its reversion level.
The stochastic variable u itself reverts to a level of zero at rate b. dX1 and dX2 are increments
of Wiener processes with instantaneous correlation ρ(t). σ1 and σ2 are the volatilities.

No-arbitrage arguments then lead to the fundamental Hull–White equation

∂V

∂t
+ 1

2
σ1(t)

2 ∂2V

∂r2
+ ρ(t)σ1(t)σ2(t)

∂2V

∂r∂u
+ 1

2
σ2(t)

2 ∂2V

∂u2

+ (θ(t) + u − a(t)r)
∂V

∂r
− b(t)u

∂V

∂u
− rV = 0,

which needs additional end and transition conditions. The calculation domain is, in principle,
unbounded. We will discuss the problem of boundary conditions, when restricting ourselves to a
bounded calculation domain, below.

The end and transition conditions describe the special shape of a financial contract, like
coupons, callabilities and so on.

The given partial differential equation can be interpreted as a diffusion–convection–reaction
equation. This type of equation is typically found in applications in continuum mechanics, espe-
cially in fluid mechanics. The dissolving of sugar in a cup of coffee, for example, could be
described by this type of equation. The dispersion of the sugar due to concentration differences
is a diffusion process, described by the second-order terms in the equation. The spreading of the
sugar driven by a stirring spoon is the convective part, given by the first-order terms, and strongly
dominated by the velocity of the coffee. The dissolving of the sugar itself is described by the
reactive part, which is the last term at the left-hand side of the equation. Figure 1, which shows

Figure 1: Velocity field in a Hull-White
model
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velocity vectors in the ru-plane, could give the motion of the coffee forced by the stirring spoon,
but, in fact, it gives the deterministic movement of the interest rates in a two-factor Hull–White
interest rate model.

The figure demonstrates that in the two-factor Hull–White model the convective part become
more and more important the larger the considered domain.

It is obvious now that numerical methods used in computational fluid dynamics to solve
equations of this type will work well also for our pricing problems. In computational fluid dynam-
ics it is well known that in the cases of comparatively large or dominating convection standard
numerical discretisation techniques lead to instabilities in the numerical solution. These instabili-
ties result in high oscillations. We have to use so-called upwind-strategies, which take into account
that in the case of dominating convection the solution in each point is strongly determined by the
information transported with the velocity.

Since in the considered pricing problems end conditions for the quantity V are prescribed,
we have to solve the equation backwards in time. So the information transport due to convection
starts in the centre and goes to the boundary.

Numerical schemes and finite elements

Finite volume method

The basic idea of the finite difference method is to approximate the derivatives in the partial
differential equation by finite differences. In the case of higher dimensions, especially including
mixed derivatives, a more general formulation is preferred and known under the name finite
volume method. The essential idea is to use an integral formulation, integrating the equation over
a mesh region and applying the divergence theorem before carrying out the discretisation.

We start already from the time discretised equation, either fully implicit
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or, e.g., of Crank Nicolson type (α = 0.5)
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The top indices n and n + 1 are used for the values at different time levels, where the values at
time level n are known and the values at time level n + 1 are unknown. For ease of readability
we will use the fully implicit time discretisation in the following.

The computational domain � is discretised into finite volumes �i, i = 1, . . . , N . The next
step is to integrate the equation over these finite subdomains:
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Those volume integrals which contain a divergence term are converted into surface integrals by
the divergence theorem and are evaluated as fluxes across the boundaries �i of each finite volume.
(nr , nu) denotes the outer unit normal vector at the boundaries.
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The finite dimensional equation is then obtained by the use of quadrature rules for the given
integrals. As outlined in the introduction the discretisation of the convection term requires special
attention. The flux across the boundaries due to convection has to be treated with special upwind
techniques, like Lax–Wendroff or QUICK schemes (see Morton 1996). Detailed analysis of the
obtained numerical schemes leads to the conclusion that the introduction of upwind schemes is
equivalent to the addition of artificial numerical diffusion.
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In the early references the finite volumes are usually rectangular and occasionally quadrilateral,
extending to hexahedral volumes in three dimensions. In the case of rectangular finite volumes
the obtained discretisation schemes are equivalent to the one obtained using the finite difference
approach.

Finite element method
The finite volume method itself can be treated as a variant of the finite element method. The
starting point for the finite element method is the weak formulation of the given equation. Under
the assumption that we are looking for a function V in a function space U we can write the weak
form of the already implicitly time discretised problem as:
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Applying Gauss’ theorem in the second-order terms leads us to
Find V n+1 ∈ U such that, for all w ∈ U ,
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Consider a discretisation �i, i = 1, . . . , N of the domain � and Uh ⊂ U a finite element space that
consists of piecewise polynomials. Replacing the trial and test space U by this finite dimensional
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space Uh and approximating the function V by a linear combination of basis functions of the trial
space lead to the finite dimensional problem. This would be the standard finite element approach
disregarding possible difficulties caused by dominating convection. Up to now the special type of
the equation is not taken into account. A rather elegant way to introduce upwind techniques to
this scheme is used in the method of streamline diffusion (see also Roos et al. 1996).

Streamline diffusion—going with the flow
The fundamental idea of this method is to add extra diffusion in the direction of the stream-
line—hence the name streamline diffusion. From the technical point of view this is realised
by replacing the test function w with a test function of the form w + δiv · ∇w, where v(=
(θ + u − ar, −bu)T ) denotes the velocity, and δi is called the SD-parameter.

The weak formulation then reads as:
Find V n+1 ∈ U such that, for all w ∈ U ,
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The additional term in the convective part is:
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which has the typical form of a diffusion term. The SD-parameter δi depends on the size of the
finite elements and on the convection–diffusion ratio, so artificial diffusion is chosen higher in
convection-dominated regions and smaller in regions where diffusion dominates.

Although the size of the computational domain is, in principle, unbounded, we have to do
our calculations on a bounded domain. It is always difficult to find appropriate and realistic
boundary conditions for each structured financial instrument considered. We choose the size of
the computational domain in a way such that the information of the prescribed boundary condition
does not get through to the centre, during the considered time interval. The centre of the domain
is determined by the current short rates. So the choice of boundary conditions, which have to
be set for solving the partial differential equation, has no influence on the solution. This may be
interpreted in such a way that the probability of very high or low, maybe even negative, interest
rates is very small.

Therefore it is clear that the size of the computational domain depends on the lifetime of the
considered instrument and on the parameter which forms the coefficient functions of the partial
differential equation: volatility, drift and mean reversion.

In the method of finite elements we are very flexible concerning the discretisation of �. Struc-
tured as well as unstructured grids with adaptive refinement in regions where it is necessary can be
chosen. The standard setting in our calculation is a structured, two-dimensional, quadrilateral grid
with graded higher resolution in both directions near the values of interest of the factors r and u.

Discretisations in time and space (r-u-plane) can be chosen independently in the case that
we use implicit time discretisation, either fully implicit or some kind of Crank-Nicolson (see
e.g. Duffy 2004).

Solution of the linear equations
The discretisation leads then to sparse linear systems with typically thousands of variables for
each time step. These are then solved iteratively by Krylov subspace techniques, which typically
show very fast convergence.

Comparison to analytic solution
In Table 1 we compare the numerical results for the pricing of zero coupon bonds with face
amount 1 and different lifetimes obtained by the use of standard finite elements, finite elements
with streamline diffusion, and the analytical solution under the two factor Hull–White interest
rate model with constant model parameters. The used parameter settings are:

a = 1.2, b = 0.03, θ = 0.05, σ1 = 0.02, σ2 = 0.01, ρ = 0.5



358 THE BEST OF WILMOTT 2

TABLE 1: VALUES OF ZEROBONDS FOR A 30 × 30 GRID

Lifetimes Analytical solution Standard finite Finite elements with
elements streamline diffusion

1 year 0.954581 0.95458 0.95458
10 years 0.661886 0.661777 0.661855
20 years 0.461421 0.460902 0.461405
40 years 0.268027 0.265955 0.268311

These results confirm, even for this simple example, that the longer the lifetime of an instru-
ment, the more important the usage of upwind techniques. We used a discretisation with a time
step of 20 days and a space discretisation of 30 × 30 points (which are fairly few points for
instruments with such long lifetimes).

If we use a space discretisation which is even coarser, namely 10 × 10 (obviously too coarse),
we still obtain realistic results in the streamline diffusion case, but unacceptable results for long
life times in the standard finite element case (see Table 2).

TABLE 2: VALUES OF ZEROBONDS FOR A 10 × 10 GRID

Lifetimes Analytical solution Standard finite Finite elements with
elements streamline diffusion

1 year 0.954581 0.954592 0.954582
10 years 0.661886 0.663975 0.661414
20 years 0.461421 0.472521 0.459271
40 years 0.268027 0.464601 0.262467

Software architecture
We laid special emphasis on implementing these numerical techniques in a strictly object-oriented
framework. We used C++ as a programming language utilising the concepts of objects, class
hierarchies and polymorphism.

• An object has state (data) and behaviour (functions). Each object is created from a class
which is a specification of the data and functions. All objects of a class have common
behaviour but generally different state.

• Using class hierarchies, classes with common components and operations need not be
recoded. This mechanism is called inheritance.

• And last but not least, polymorphism allows different kinds of objects that have common
behaviour to be used in code that only uses this common behaviour.

A detailed introduction to the object-oriented programming style with special emphasis on
scientific and engineering programs can be found in Barton–Nackman (1994), for a general
description and as a reference manual see Stroustrup (2000).
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How are these concepts realised in our code?
Each instrument which can be priced by our finite element code consists of the base class BasisIn-
strument and different AttributeManagers. These AttributeManagers handle different possible
attributes of a structured financial instrument, like callability, coupon payments, or discrete divi-
dends. So, for example, a callable, convertible, fixed rate bond inherits the same class Callable as
a callable constant maturity floater. So the implementation of a new structured instrument having
already existing attributes is rather easy. All attributes which exist already can be combined with
new ones to add new instruments.

The core of the two-factor pricing is built by the class FEPricer (FiniteElementPricer). This
class knows everything needed about finite elements with streamline diffusion. With the aid of
pointers to an object of the class BasisModel and to an object of the class BasisInstrument the
information which two-factor model should be used and which instrument should be priced is
obtained. In this part of the program, polymorphism is strongly applied.

Going further
In the previous sections, we have derived the numerical schemes for the solution of the two-factor
Hull–White differential equation. These methods (finite elements and streamline diffusion) can
of course also be applied to different problems like: different interest rate models which can be
written as PDEs, quanto swap problems being built from two one-factor interest rate models,
callable convertible bonds and many more. The techniques can also be applied for models in
more than two space dimensions. Realistically, there will be a performance problem in problems
with 4+ space dimensions which would lead to equations with millions of unknowns.

Until now, we have not said too much about end and interface conditions. Consider, e.g.,
a callable reverse CMS, i.e. a bond, which pays annual coupons of, say, 10% minus the 5
year swap rate, capped at 7% and floored at 2%. These coupons should be set at the begin-
ning of each coupon period. The lifetime of these instruments is typically quite long (10 to 30
years). To make it more complex, the instrument is equipped with a Bermudan callability at each
coupon date.

How do we obtain the swap rates at the coupon set dates? The Hull–White equation has
a Green’s function (the calculations may become quite tedious if the parameters in the model
are not constant but, say, piecewise constant). The value V (r, u, t) of a zero coupon bond
maturing at a time T requires the calculation of some integrals only. Swap rates can then be
obtained by reverse bootstrapping and taking into account the appropriate day count conventions
for the swaps.

At maturity, the bond pays the redemption plus the coupon which was set at the beginning of
the last coupon period and which we therefore do not know when propagating backwards from
maturity. What we can do is calculate the different discount factors from maturity to the coupon
set date in the different states of r and u at the coupon set date and then multiply them by the
coupon rate at the set date.

If the instrument is callable, we have to compare the staying alive value and the call price and
take the minimum at the Bermudan call dates. Continuing this propagating backwards, we finally
reach the valuation date.
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More software architecture
Our UnRisk library is not linked to some external C++-code, but is installed within Mathematica
as an application package. Therefore we have the following architecture.

UnRisk is called by the Mathematica Kernel, which itself is called either by the Mathematica
front end or (via Mathematica Link for Excel) by the Excel front end (Figure 2). Using the Excel
front end, the user typically obtains market information like interest rates or volatilities from
information providers like Reuters or Bloomberg.

Figure 2: UnRisk software architecture

The Mathematica front end, on the other hand, may be used to write additional code, to
produce interactive documents or to generate graphics and animations.

The valuation of a callable reverse floater in the Mathematica front end might look like this:

Load the package
Needs["UnRisk‘UnRiskFrontEnd‘"]

Construct a reverse floater (maturity 2024) which pays annual coupons of 12% (“Margin”) minus
(“Reference Weight”) the 5 years (= 60 months) swap rate set in advance (“RefixAttributes”)
with caps and floors at 8 and 2%, respectively.

MyGeneralCMF=MakeGeneralCMFloater[{0.05}, {2024, 10, 10},
{2004, 10, 10}, {2005, 10, 10}, 60, FaceAmount → 100,
CouponFrequency → "Annual", CouponBasis->"30/360",
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RateFrequency->"Annual", RateBasis->"30/360", Margin → 0.12,
ReferenceRate->"Swap", RefixAttributes → {1, 0, 12},
ReferenceWeight→1, Cap →0.08, Floor→0.02];

The bond should be callable annually, starting in 2009

MyCallSchedule=MakeCallPutSchedule[Table[{2008+i, 10, 10}, 1.},
{i, 1, 15}]];
MyCPGeneralCMF=MakeCPGeneralCMFloater[MyGeneralCMF,
CallSchedule→ MyCallSchedule, CallExercise->"Bermudan",
CallAccrued → True];

Construct the two-factor Hull–White model from interest rate curves, cap volatilities and at-the-
money swaption volatilities.

MyToday= {2004, 10, 26;}
MySwapCurve=MakeSwapCurve[MyToday, {{7, .03331}, {31, .03162},
{62, .03125}, {92, .03043}, {123, .03011}, {153, .02989}, {184,
.0297}, {274, .02959}, {365, .02973}, {730, .0324}, {1095,
.03525}, {1461, .0378}, {1826, .03995}, {2191, .04185}, {2556,
.0435}, {2921, .0448}, {3286, .0459}, {3651, .0468}, {4380,
.04825}, {5475, .0497}, {7300, .051}, {9125, .05145}, {10950,
.0513}, MoneyMarketBasis->"ACT/360", SwapBasis->"30/360",
SwapFrequency->"Annual"];
MyYieldCurve=MakeYieldCurve[MySwapCurve];
MyCapStrikes={0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055,
0.06, 0.07, 0.08, 0.09, 0.1};
MyCapMaturities={{2, "30/360", "Quarter-Annual"}, {3, "30/360",
"Semi-Annual"}, {4, "30/360", "Semi-Annual"}, {5, "30/360",
"Semi-Annual"}, {6, "30/360", "Semi-Annual"}, {7, "30/360",
"Semi-Annual"}, {8, "30/360", "Semi-Annual"}, {9, "30/360",
"Semi-Annual"}, {10, "30/360", "Semi-Annual"}};
MyCapVolas ={{.288, .262, .249, .253, .26, .268, .276, .283,
.296, .31, .324, .339 {.289, .257, .236, .221, .218, .219,
.222, .229, .239, .252, .267, .284}, {.281, .249, .224, .207,
.199, .196, .196, .199, .206, .218, .233, .247}, {.274, .242,
.216, .198, .187, .18, .178, .178, .183, .193, .205, .219},
{.267, .236, .21, .191, .178, .168, .165, .164, .166, .174,
.184, .197}, {.261, .231, .205, .185, .171, .161, .156, .154,
.154, .16, .169, .18}, {.256, .226, .201, .181, .166, .155,
.149, .146, .146, .15, .158, .167}, {.251, .222, .198, .177,
.162, .151, .144, .14, .139, .142, .149, .157}, {.246, .219,
.195, .174, .159, .148, .139, .136, .135, .137, .143, .15}};

MySwaptionExpiries={2, 5, 10;}
MySwaptionEnds={3, 5, 10, 20;}
MySwaptionVolas ={{.179, .156, .131, .118 {.129, .121, .112,
.105}, {.105, .104, .101, .096}};}
MySwapFrequency="Annual";
MySwapBasis="ACT/360";

MyModel=Make2DModel[MyYieldCurve, MyCapMaturities,
MyCapStrikes, MyCapVolas, MySwaptionExpiries, MySwaptionEnds,
MySwaptionVolas, SwapFrequency->MySwapFrequency, SwapBasis-
>MySwapBasis];
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The calibration problem is an ill-posed problem meaning that small perturbations in the data
can lead to arbitrarily large perturbations in the resulting interest rate model parameters if no
special stabilising techniques, so-called regularisation methods, are applied. We will discuss this
aspect in a forthcoming paper.

Our experience shows that one should use as many swaption data as available especially on
the long end of lifetimes to obtain good pricing results for bonds with long lifetimes.

Valuate the bond

SettlementDay=ShiftByBusinessDays[MyToday, 3];
Valuate[MyCPGeneralCMF, MyToday, SettlementDay, MyModel]
{113.676,113.426,-11.3674,102.309,102.059}

The returned vector contains dirty and clean value of the pure reverse CM floater (without
callability), the option value of the callability, and dirty and clean value of the callable reverse
CMF.

Conclusions
We have presented how finite element techniques can successfully be applied to the pricing of
complex structured instruments. Streamline diffusion turns out to be a method which is capable
of stabilising problems with large or dominating convection.
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No Fear of Jumps
Y. d’Halluin,∗∗ D. M. Pooley∗∗ and P. A. Forsyth∗

Jump diffusion-based models have recently increased in popularity. In this chapter, we
develop robust and efficient techniques for the numerical solution of option pricing.
models where the underlying process is a jump diffusion process. The numerical
techniques can be applied to a variety of contingent claim valuations. Numerical
examples for European, American and Parisian options are provided.

1 Introduction
In 1973, the Black–Scholes model revolutionized derivative pricing (Black and Scholes 1973).
Using only a volatility and an interest rate, Robert Black and Myron Scholes developed an
arbitrage-free pricing formula that did not require knowledge of investor beliefs about the underly-
ing stock’s expected return. However, over the years practitioners have recognized the limitations
of the Black–Scholes model. In particular, the constant volatility assumption is insufficient to
capture the smile or skew that is exhibited by the implied volatilities of traded financial options.

To better capture these volatility profiles, numerous avenues of research have been explored
which either extend the Black–Scholes model or explore completely new approaches. Among
these extensive works, the jump diffusion model (Merton 1976) and the stochastic volatility
model (which could include jumps as well) (Bates 1996, Scott 1997, Bakshi et al. 1997) appear
to be the most popular among practitioners. Unfortunately, a large portion of the literature devoted
to these approaches is limited to analytical or quasi-analytical solutions for vanilla options. Very
few of these methods can be extended to price exotic or path-dependent options. For these more
complicated scenarios, numerical partial differential equation techniques must be used.

The objective of this chapter is to present a robust and efficient numerical method for solving
the partial integro differential equation (PIDE) which arises from the jump diffusion model. We
limit ourselves to pricing options under the jump diffusion model, but this framework is also
applicable to credit risk models or more complex valuation models such as stochastic volatility
with jumps. In the latter case, one simply has to solve a two-dimensional PIDE problem, and
apply the techniques presented below for the jump diffusion part in the stock direction. A major

Contact addresses: ∗School of Computer Science, University of Waterloo, Waterloo ON, Canada, ∗∗ITO 33 SA, 36 rue
Lacépède, 75005 Paris, France
E-mail: yann@ito33.com, david@ito33.com, paforsyt@uwaterloo.ca
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advantage of the methods introduced here is that they are easily added to existing numerical option
pricing software. In particular, software that uses an implicit approach for valuing American
options can be easily modified to price American options with jump diffusion.

The title of this chapter is obviously based on the very readable article ‘Fear of Jumps’ by
Lewis (2002). This article was mostly analytical in nature, and relied on an equilibrium-based
approach to option pricing. In contrast, this chapter has a numerical focus for pricing options
under jump diffusion. Further, we attempt to convince the reader that adding a jump component
to pricing software can be approached with ‘no fear’. Alternatively, this chapter could have been
entitled ‘Fear of No Jumps’, as our examples are intended to show that a jump component adds
essential features to a pricing model. Without these features, one should be concerned about the
accuracy and stability of the pricing framework.

Our technique is similar in some respects to Zhang (1997), though less constrained in terms of
stability restrictions. Our method also offers a higher rate of convergence than Zhang’s. Similar
comments apply if we compare our approach to that of Andersen and Andreasen (2000), at least
in the case of American options.

In this chapter, the PIDE presented by Merton (1976) and Andersen and Andreasen (2000) is
studied exclusively. While it is true that Merton’s assumption about jump risk being diversifiable
does not hold for index-based options, and in this case one must use an equilibrium-based method
(Lewis 2002) or a mean variance hedging approach (Ayache et al. 2004), the PIDEs resulting in
either case are essentially identical. Consequently, the numerical techniques presented here can
be applied.

This chapter is organized as follows. In section 2, the numerical method for solving the option
pricing PIDE which results from a jump diffusion model is presented. In section 3, a wide variety
of numerical examples of exotic, path-dependent contracts are presented. In particular, we include
numerical examples for American and Parisian options. Finally, section 4 contains concluding
remarks.

2 Mathematical model
This section provides an overview of the mathematical modeling issues that arise in a jump dif-
fusion framework. The presentation and notation closely follows that of d’Halluin et al. (2003).
However, particular attention is paid here to the practical issues that arise in a numerical implemen-
tation. Further, since the goal of this chapter is somewhat illustrative, several proofs and technical
details have been omitted. The reader is referred to d’Halluin et al. (2005) and the references
therein for a complete treatment of the theory of option pricing in a jump diffusion framework.

In the usual (no jumps) Black–Scholes model for option pricing (Black and Scholes 1973,
Merton 1976), the underlying asset price S evolves according to

dS

S
= µ dt + σdZ, (2.1)

where µ is the (real) drift rate, σ is the volatility, and dZ is the increment of a Gauss–Wiener
process. Let V (S, t) be the value of a contingent claim that depends on the underlying asset S

and time t . By appealing to the principle of no-arbitrage, a partial differential equation (PDE) for
the value of V can be derived:

Vτ = 1

2
σ 2S2VSS + rSVS − rV, (2.2)
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where τ = T − t is the time remaining until expiry T , and r is the continuously compounded risk-
free interest rate. Equation (2.2) is simply a second order parabolic PDE of one space dimension
and one time dimension. This equation has been the subject of countless studies, and is well
understood from a variety of viewpoints (financial, mathematical, numerical). Letting

LV = 1

2
σ 2S2VSS + rSVS − rV (2.3)

equation (2.2) can be written in the simple form

Vτ = LV. (2.4)

It is assumed that the reader is familiar with the numerical solution of PDEs of the form (2.4).
Software for this problem is easily written, and off-the-shelf implementations are readily available.

Nevertheless, the process specified by equation (2.1) is not sufficient to explain observed
market behavior (Bakshi and Cao 2002). In reality, stock prices have been observed to have
large instantaneous jumps. Such behavior can be modeled by the risk-neutral process (Merton
1976)

dS

S
= (r − λκ) dt + σdZ + (η − 1)dq, (2.5)

where dq is a Poisson process (independent of the Brownian motion), and η − 1 is an impulse
function producing a jump from S to Sη. If λ is the arrival intensity of the Poisson process, then
dq = 0 with probability 1 − λdt , and dq = 1 with probability λdt . The expected jump size can
be denoted by κ = E[η − 1], where E is the expectation operator.

As is well known, the fair price of a contingent claim V (S, t) under a process of the form
(2.5) is given by the following partial integro differential equation (PIDE):

Vτ = 1

2
σ 2S2VSS + (r − λκ) SVS − rV + λ

∫ ∞

0
V (Sη)g(η) dη − λV. (2.6)

In equation (2.6), g(η) is the probability density function of the jump amplitude η. The probability
density function is assumed to have the usual distribution properties, such as ∀η, g(η) ≥ 0 and∫ ∞

0 g(η) dη = 1. Letting

L̂V = 1

2
σ 2S2VSS + (r − λκ)SVS − (r + λ)V, (2.7)

equation (2.6) can be written as

Vτ = L̂V + λ

∫ ∞

0
V (Sη)g(η) dη. (2.8)

As with LV , the behavior of L̂V is well understood. Further, it should be straightforward to
modify any reasonably designed software that can handle numerically LV to compute L̂V . Of a
more difficult nature is the integral term in equation (2.8).

The obvious approach for the numerical computation of the integral term is to use standard
numerical integration methods such as Simpson’s rule or Gaussian quadrature. Unfortunately,
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for a numerical grid of size n, these techniques are O(n2). For real-time pricing software, and
especially for calibration routines, quicker algorithms are desirable.

To this end, the integral term of equation (2.8) should be computed in a way that is

• efficient (better than O(n2)),

• robust,

• flexible (can be used with non-linear pricing models, and/or exotic options),

• easily added to existing option pricing software.

All of these properties are satisfied if

• the integral term is evaluated by FFTs, thereby only requiring O(n log n) operations per
timestep,

• the integral term is applied implicitly, thereby increasing stability and allowing the pos-
sibility of second-order convergence.

The FFT evaluation of the integral and the implicit treatment of the resulting terms will be
discussed separately below. Following these, an extension to American options will be provided,
as well as a brief description of credit risk. Examples which use the techniques described below
are provided in section 3.

It should be noted that in some cases, the integral term can be evaluated directly in O(n) time
using fast Gauss transform (FGT) techniques (Greengard and Strain 1991). While this technique
works for the case where jump sizes are lognormally distributed, it is not clear if it works for
more general distributions. Furthermore, numerical experiments show that for any practical grid
size the FFT approach for evaluating the integral term is faster than the FGT method. (Note that
the integral needs only to be evaluated with an accuracy consistent with the discretization of the
PDE.)

2.1 FFT evaluation

Before the integral term of equation (2.8) can be evaluated by FFTs, it must be manipulated into
the form of a correlation integral. Once this process is done, at least two numerical issues remain.
First, standard FFT algorithms require an equally spaced grid, whereas an efficient PDE grid will
be unequally spaced. Interpolation must be used to move from one grid to the other. Second, since
the input functions to the FFT routines will be non-periodic, wrap-around pollution can negatively
affect the solution. These numerical issues are discussed in section 2.1.2.

Manipulation Ignoring the leading λ, the integral term in equation (2.8) is

I (S) =
∫ ∞

0
V (Sη)g(η) dη. (2.9)

The goal is to turn this expression into a correlation product which can be evaluated by FFT
techniques. Letting x = log(S) and applying the change of variable y = log(η), we obtain

I =
∫ +∞

−∞
V (x + y)f (y)dy, (2.10)
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where f (y) = g(ey)ey and V (y) = V (ey). The f (y) term can be interpreted as the probability
density of a jump of size y = log η. Conveniently, equation (2.10) corresponds to the correlation
product V (y) ⊗ f (y). In discrete form, equation (2.10) becomes

Ii =
j=N/2∑

j=−N/2+1

V i+j f j�y + O (
(�y)2) , (2.11)

where Ii = I (i�x), V j = V (j�x), and

f j = f (j�y) = 1

�x

∫ xj +�x/2

xj −�x/2
f (x) dx (2.12)

It has been assumed that �y = �x.
Assuming that f is real (a safe assumption for financial applications), the discrete correlation

of equation (2.11) can be evaluated using FFTs since

Ii = IFFT
((

FFT(V )
) (

FFT(f )
)∗)

i
(2.13)

where (·)∗ denotes the complex conjugate. For efficiency, FFT(f ) can be pre-computed and
stored. During each timestep (or each iteration of an iterative method), an FFT and an inverse
FFT must be computed.

Numerical issues A typical grid for the discretization of L̂V in equation (2.8) will be unequally
spaced in S coordinates. For example, small mesh spacing will be used near strikes or barriers,
with large mesh spacing elsewhere. However, the discrete form of the correlation integral (2.11)
requires an equally spaced grid in log(S) coordinates. It is highly unlikely that these two grids
are fully compatible. Hence, values must be interpolated between the two grids.

In particular, values of V on the unequally spaced S grid must be interpolated onto an equally
spaced log(S) grid. The computation of equation (2.13) can then be performed.1 Finally, the
resulting equally spaced V data needs to be interpolated back onto the unequally spaced S grid.
The overall process is summarized in algorithm (1). If linear or higher order interpolation is used,
algorithm (1) is second-order correct. This is consistent with the discretization error in the PDE
and the midpoint rule used to evaluate the integral in equation (2.11).

Algorithm 1 Method for computing the integral term of equation (2.8) by FFTs.
Interpolate the discrete values of V onto an equally spaced log(S) grid. This generates the
required values of Vj.
Carry out the FFT on the V data.
Compute the correlation in the frequency domain (with pre-computed FFT(f ) values), using
equation (2.13).
Invert the FFT of the correlation.
Interpolate the discrete values of I(xi) back onto the original S grid.
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For the actual FFT evaluation, standard algorithms assume periodic input data. If the input data
is not periodic (as with the current application), then the discrete Fourier transform is effectively
applied to the periodic extension of the input functions. This can lead to undesirable ‘wrap-around
pollution’, which manifests itself with erroneous values in the solution.

To avoid wrap-around effects, the domain of the integral in equation (2.8) can be extended to
the left and right by amounts �y− and �y+. The integral then becomes

Iext =
∫ ymax+�y+

ymin−�y−
V (x + y)f (y)dy, (2.14)

where ymax = log(Smax), ymin = log(Smin), and [Smin, Smax] are selected appropriately. Unknown
values in the range [ymax, ymax + �y+] can be obtained by linear extrapolation. This assumes that
the far field behavior of the option pricing problem is linear. Values in the range [ymin − �y−, ymin]
can be obtained from interpolation on the original S grid, assuming an S0 = 0 grid point has been
maintained.

Once the FFT has been performed in the extended domain, values in the extensions are
discarded. Because of the extension, values in the original domain will have been less affected
by wrap-around pollution.

2.2 Implicit evaluation

We now look at the numerical evaluation of equation (2.8). Let �n
i denote the discrete form of the

integral evaluated at timestep n using data V n (one can think of � as an application of algorithm
(1)). To solve equation (2.8), the L̂V term must also be discretized. This can be done by any
standard method, such as finite differences, finite volumes, or finite elements. Let the discrete
form of L̂V at timestep n be given by

(L̂V
)n

i
. A general discretized form of equation (2.8) can

then be written as

V n+1
i − V n

i

�τ
= (1 − θ)

(L̂V
)n+1
i

+ θ
(L̂V

)n

i
+ (1 − θJ )λ�n+1

i + θJ λ�n
i , (2.15)

where

θ is a time-weighting parameter for L̂
θ = 0 is fully implicit

θ = 1/2 is Crank Nicolson

θ = 1 is fully explicit

θJ is time-weighting for the jump term �

θJ = {0, 1/2, 1}.

Let M denote the discretization matrix stencil such that

−[MV ]ni = (L̂V
)n

i
. (2.16)
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Algorithm 2 Fixed point iteration.

Let (Vn+1)0 = Vn

Let V̂k = (Vn+1)k

Let �̂k = (�n+1)k

Construct vector �n using algorithm (1)
for k = 0, 1, 2, . . . until convergence do

Construct vector �̂k using algorithm (1)
Solve [I − (1 − θ)M]V̂k+1 = [I + θM]Vn + (1 − θJ)λ�̂k + λθJ�

n

if maxi
|V̂k+1

i −V̂k
i |

max(1,|V̂k+1
i |) < tolerance then

quit
end if

end for

Equation (2.15) becomes

[I − �τ(1 − θ)M]V n+1 = [I + �τθM]V n + (1 − θJ )λ�τ�n+1
i + θJ λ�τ�n

i . (2.17)

For standard PDE discretization techniques, the matrix M in equation (2.17) is tridiagonal.
Tridiagonal systems are quick and easy to solve. However, an implicit treatment of the jump term
(θJ �= 1) causes �n+1

i to lead to a highly undesirable dense matrix (all nodal values are coupled
in equation (2.10)). On the other hand, a fully explicit treatment of the jump term is easy to adapt
to existing code, since only the right-hand side vector needs to be updated. However, while still
stable, only first-order convergence is possible.

To allow for an implicit treatment of jumps, a fixed point iteration method must be used. A
description of the method is given in algorithm (2). At iteration k known data is used to construct
the jump term. Since only the right-hand side is affected, a simple tridiagonal system needs to be
solved at each iteration.

Under some fairly mild assumptions—that the discretization of L̂ forms an M-matrix, the
probability density function has certain standard properties, the interpolation weights are positive,
and that r and λ are positive—it can be proven that algorithm (2) is globally convergent d’Halluin
et al. (2004). Further, the error at each iteration is reduced by approximately (1 − θ)λ�τ , indi-
cating convergence in a small number of iterations (i.e. for typical values, three iterations are
sufficient).

2.3 American options
American options can be solved by a simple penalty approach. Details of the penalty approach
can be found in Forsyth and Vetzal (2002). Further details with regards to jump diffusion models
can be found in d’Halluin et al. (2004). Briefly, the penalty approach involves adding a penalty
term to the pricing PDE. Equation (2.8) then becomes

Vτ = L̂V + λ

∫ ∞

0
V (Sη)g(η)dη + ρ max(V ∗ − V, 0). (2.18)

In the limit as ρ → ∞, the solution satisfies V ≥ V ∗. The American constraint is enforced by
setting V ∗ to the payoff of the option.
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In the discrete equations, ρ is set independently at each node. If the value at a node i drops
below V ∗

i (the payoff), then ρi is set to a large number. This essentially adds an extra source term
to the PDE, thereby increasing the value at the particular node. If the value at a node is greater
than V ∗, then ρi is set to zero, and the regular PDE is solved. This can also be thought of as
constraint switching. Wherever the value drops below the V ∗ threshold, the constraint is switched
on and applied. If the value is above the threshold, the constraint is switched off.

As with the evaluation of the integral term, the penalty constraint can be applied explicitly
or implicitly. An explicit evaluation simply uses data at the previous timestep to determine when
the constraint is activated. An implicit evaluation could use a fixed point iteration (or other non-
linear solving method) to apply the constraint using data at the current timestep. If the jump term
is already being evaluated using an iterative method, little or no extra cost is incurred by the
penalty method. Convergence of the penalty approach for American options in a jump diffusion
framework was proven in d’Halluin et al. (2004).

2.4 Credit risk

Until this point, jumps in stock price associated with the jump diffusion model have been assumed
to occur for arbitrary exceptional events. However, a special jump in asset level occurs in the case
of bankruptcy. In pricing corporate and convertible bonds, it is of interest to determine the risk
adjusted hazard rate of bankruptcy. If it is assumed that the stock price of a firm jumps to zero
on default, then λh can be interpreted as the risk adjusted hazard rate of bankruptcy (or default in
the case of bonds). In this case, the PDE satisfied by vanilla puts/calls in the presence of a single
jump to bankruptcy is given by

Vτ = 1

2
σ 2S2VSS + (r + λh)SVS − (r + λh)V + λhV (0, τ ). (2.19)

Equation (2.19) can be derived by hedging arguments, or by setting κ to −1 and the jump
probability density function g(η) to the delta function δ(0) (1 at η = 0, zero elsewhere) in the
usual Merton jump diffusion model.

It is usually assumed that λh = λh(S, t), with λh(S, t) being determined by calibration to
observed market prices for vanilla options and credit instruments. Since option prices are usually
available for a range of strikes, more information is provided about default rates than is usually
available from simply examining credit instruments. Note that equation (2.19) suggests that default
risk has an effect on the pricing of vanilla options. As well, if the possibility of a single jump to
bankruptcy is assumed, then a hedging portfolio consisting of the option, an underlying asset, and
an additional option can be constructed which eliminates both the diffusion risk (a delta hedge)
as well as the jump risk (since the jump has only one possible outcome).

3 Results
The examples of this section are intended to compare the regular Black–Scholes model and
the jump diffusion model. To ensure a consistent basis for comparison, the following procedure
is used:

1. Given some jump diffusion parameters, compute the (numerical) at-the-money price Vjump

of a European put option.
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TABLE 1: INPUT DATA USED TO VALUE VARIOUS
OPTIONS UNDER THE LOGNORMAL JUMP
DIFFUSION PROCESS. THESE PARAMETERS ARE
APPROXIMATELY THE SAME AS THOSE
REPORTED IN ANDERSEN AND ANDREASEN (2000)
USING EUROPEAN CALL OPTIONS ON THE S&P500
STOCK INDEX IN APRIL OF 1999

volatility: σ 0.15
risk-free rate: r 0.05
jump standard deviation: γ 0.45
jump mean: µmean −0.90
jump intensity: λ 0.10
time to expiry: T 0.25
strike: K 1.00

2. Using a constant volatility Black–Scholes model, determine the implied volatility σimplied

which matches the option price to the jump diffusion value Vjump at the strike K .

3. Value the option using a constant volatility model (no jumps) using the implied volatility
σimplied estimated in Step 2.

The first example prices a European put option with and without jumps. Parameters are pro-
vided in Table 1. Results are shown in Figure 1. The implied volatility value for the Black–Scholes
model is 0.1886. By construction, the prices of the Black–Scholes model and the Merton jump
model are equal at the strike price. In-the-money values are larger for the Black–Scholes model,
but only slightly. Of interest is the fact that the jump model prices deep out-of-the-money options
significantly higher. This reflects the fact that a jump event can dramatically change the moneyness
of an option to a much larger extent than a simple diffusion only model.

The delta and gamma plots for the two models are similar, although the jump model plots show
greater variation. This indicates that a delta hedge of the jump model may need more frequent
rebalancing. Nevertheless, jumps introduce market incompleteness, and simple delta hedging will
definitely fail. Optimal hedging in incomplete markets is preferred (Henrotte 2002, Ayache et al.
2004). In any case, hedging will require accurate delta and gamma information. It is essential that
the numerical scheme produce smooth delta and gamma values.

The second example is a repeat of the first, except that an American put option is priced
instead of a European put option. The implied volatility value used is the same as in the previous
example: σimplied = 0.1886. Results are similar, except that delta values now reach and remain at
−1 for low stock prices, while gamma values jump to zero. This jump to zero occurs at the free
boundary between the early exercise region and the regular pricing region. The early exercise
region is further to the right for the Merton jump model, indicating that jumps cause an increase
in the probability that the option should be exercised early.

The last example is for a Parisian knock-out call option. The particular case considered here
is an up-and-out call with daily discrete observation dates. This contract ceases to have value
if S is above a specified barrier level for a specified number of consecutive monitoring dates.
This can be valued by solving a set of one-dimensional problems which exchange information
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Figure 1: Put option price (V ), delta (VS) and gamma (VSS). The input data is contained in Table 1

at monitoring dates (Vetzal and Forsyth 1999). Base parameters are the same as in Table 1. The
knock-out barrier is placed at S = 1.20, while the number of consecutive days above the barrier
until knock-out is set to 10. The implied volatility value is 0.1886. It is interesting to note that the
Merton jump model gives smaller prices for stock values below the strike and above the barrier.
This is somewhat in contradiction to the put options, for which deep out-of-the-money prices
were higher for the jump model. Nevertheless, the differences are small, and the delta and gamma
plots show the far field behavior to be quite similar.

The greatest price difference occurs between the strike and barrier levels. Presumably a jump
in this region hides the effect of the (upper) barrier, whereas a pure diffusion model will have its
value decreased by the barrier. However, it is difficult to intuitively predict the effect of jumps
on prices. For convex payoffs, jumps increase the value of an option. For non-convex payoffs,
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Figure 2: American put option price (V ), delta (VS) and gamma (VSS). The input data is contained
in Table 1

as is the case for the Parisian knock-out call, it is not clear what effect jumps will have on
the price.

4 Conclusion

This chapter has demonstrated the numerical evaluation of the PIDE resulting from the Merton
jump diffusion model in option pricing. The integral term of the pricing equation was evaluated
using efficient FFT techniques. The issues of interpolation between unequally spaced PDE grids
and equally spaced FFT grids, as well as wrap-around pollution effects, were briefly discussed. A
fixed point iteration method was used to obtain an implicit timestepping method without resorting
to a full dense matrix solve. Extensions to American options and credit risk were also mentioned.
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Figure 3: Parisian knock-out call option (V ), delta (VS) and gamma (VSS) with discrete
daily observation dates with and without jumps. The barrier is set at S = 1.20 and the
number of consecutive daily observations to knock-out is 10. The input data is contained in
Table 1

Perhaps the biggest advantage of the techniques described in this chapter is the ease with which
they can be added to an existing exotic option pricing library. All that is required is that a function
be added to the library which, given the current vector of discrete option prices, returns the vector
value of the correlation integral. This vector is then added to the right-hand side of the fixed point
iteration. This method can even be applied to any jump size probability density function.

The numerical examples showed the effect of jumps on various option values. For European
and American put options, the jump diffusion model increases deep out-of-the-money prices.
Changes to the hedging parameters—delta and gamma—were also noted. The stability of the
methods was alluded to by the smooth delta and gamma plots. An example of a Parisian knock-out
option was also provided.

An important issue not addressed in this chapter is hedging jump diffusion models. Since the
market is incomplete, simple delta hedging can give large errors. In this case optimal hedging in
incomplete markets must be used (Ayache et al. 2004).
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